

Ingenieurgesellschaft
Quadriga mbH
Monnetstraße 24

52146 Würselen

Fax: 02405/80290-29 e-mail: info@IQ-mbH.de

www IO-mbH de

Ingenieurgesellschaft Quadriga mbH

Stadtentwicklungsgesellschaft mbH & Co. KG (SEG Jülich)
Große Rurstraße 17

52428 Jülich

Monnetstraße 24 • 52146 Würselen

Projekt 2018-01-03 DaGa19-11-13SEG-Nr.12 Ihr(e) Ansprechpartner Holger Seeberger/Gudrun Damm

13. November 2019

Baumaßnahme: Jülich, ehemaliges FH-Gelände Neubau von Wohnhäusern - <u>Grundstück 12</u> Baugrunderkundung

1. Vorgang, Aufgabenstellung:

Die Stadtentwicklungsgesellschaft mbH & Co. KG, Jülich, veräußert die Grundstücke des Erschließungsgebiets "Alte Fachhochschule" in Jülich. Auf den Grundstücken sollen nachfolgend Wohnhäuser in unterkellerter oder nicht unterkellerter Bauweise errichtet werden. Dieses Gutachten befasst sich mit dem Grundstück 12. Es wird sowohl die Gründung für ein nicht unterkellertes als auch für ein unterkellertes Wohnhaus betrachtet.

Die IQ Ingenieurgesellschaft Quadriga mbH, Würselen, wurde am 23. August 2018 von der Stadtentwicklungsgesellschaft mbH & Co. KG mit der Erkundung und Beurteilung des Baugrunds beauftragt. Grundlage der Beauftragung ist das Angebot der IQ Ingenieurgesellschaft Quadriga mbH vom 31. Januar 2018.

Grundlagen der Beurteilung

Zur Erkundung des Baugrunds und der Grundwasserverhältnisse wurden am 29. August 2019 zwei Bohrungen mit der Rammkernsonde sowie eine Sondierung mittels Leichter Rammsonde (DPL) durchgeführt. Die Bohrung 1 wurde bis in eine Tiefe von 6,0 m u. GOK niedergebracht, die Bohrung 2 musste aufgrund zu hoher Bohrwiderstände in einer Tiefe von 4,2 m u. GOK abgebrochen werden. Aufgrund zu hoher Schlagzahlen wurde auch die Sondierung in einer Tiefe von 1,8 m u. GOK abgebrochen.

Die Ansatzstellen der Bohrungen und der Sondierung wurden auf einem Lageplan eingetragen. Die Bohrprofile sind in den Anlagen 1 und 2 (Legende: Anlage 6) im Maßstab 1:30 dargestellt. Die Schichtenverzeichnisse gemäß DIN EN ISO 14688 sind den Anlagen 1.1 und 2.1 zu entnehmen. In der Anlage 3 ist das Sondier-

Planung von Freianlagen, Straßen und Wegen • Planung von Kanalisations-, Entwässerungs- und Versickerungsanlagen • Bauleitung und Bauüberwachung Begleitung von Bauwerkssanierungen • SiGe-Koordination • Baugrundgutachten • Hydrogeologische Gutachten • Altlastengutachten und Gefährdungsabschätzungen

diagramm der Sondierung gemäß DIN EN ISO 22476-2 im Maßstab 1:15 aufgeführt. Ferner wurden aus den Bohrprofilen und dem Rammdiagramm zwei Profilschnitte (Anlagen 4 und 5) konstruiert. Der Maßstab der Länge beträgt jeweils 1:180, der Maßstab der Höhe beträgt jeweils 1:60, die Profilschnitte sind somit 3-fach überhöht. In Anlage 4 wurde die Gründungsempfehlung für ein nicht unterkellertes Wohnhaus dargestellt, in Anlage 5 die für ein unterkellertes Wohnhaus.

Aus dem Bohrgut der Bohrungen wurden im Zuge der geologischen Aufnahme des Bohrguts insgesamt 7 gestörte Bodenproben entnommen (siehe Bohrprofile und Schichtenverzeichnisse). Die Bodenproben wurden sämtlich organoleptisch beurteilt.

Zur Bestimmung des Entsorgungsweges der Aushubböden sowie zur Prüfung auf eine potentielle schädliche Bodenverunreinigung wurden die in Tabelle 1 aufgeführten Laboruntersuchungen im chemisch-analytischen Labor GEOTAIX Umwelttechnologie GmbH, Schumanstraße 29, 52146 Würselen, durchgeführt.

Probe	Probe: Tiefe	Art	Analyse	Labornummer	Anlage
MP 12: 0,0 - 3,2 m	12/1-01: 0,0 - 0,6 m 12/1-02: 0,6 - 1,8 m 12/2-01: 0,0 - 1,5 m 12/2-02: 1,5 - 3,2 m	Kies, Schluff, Sand, Ziegelbruch, Betonbruch, Mörtel, Kohle	LAGA Bauschutt	1911301-003	A 1

Tab. 1: Übersicht über alle durchgeführten Analysen mit Angabe der Labor- und Anlagennummern

Zur Beurteilung des Baugrunds und der Grundwasserverhältnisse wurden ferner die folgenden für das Projektgebiet vorliegenden geologischen und hydrogeologischen Kartenwerke verwendet.

- [1] Hydrologische Karte von Nordrhein-Westfalen, Blatt 5004, Jülich, Grundrisskarte, Maßstab 1:25.000, Hrsg. Landesumweltamt NRW, 1987
- [2] Hydrologische Karte von Nordrhein-Westfalen, Blatt 5004, Jülich, Profilkarte, Maßstab 1:25.000, Hrsg. Landesumweltamt NRW, 1987
- [3] Karte der Grundwassergleichen, Blatt 5104, Düren, Stand April 1988, Maßstab 1:50.000, Hrsg. Landesumweltamt Nordrhein-Westfalen, Essen 1995
- [4] Online Auskunft "NRW Umweltdaten vor Ort" vom Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen (11.11.2019).

3. Projektbeschreibung

Das Erschließungsgebiet liegt im Nordosten der Stadt Jülich am Rande des Geländes der ehemaligen Fachhochschule Jülich. Das Grundstück 12 liegt südöstlich im Erschließungsgebiet, nördlich der neu errichteten Kita.

Das gesamte Projektgebiet ist morphologisch über den Bebauungsplan dem ursprünglich hängigen Gelände angepasst. Das betrachtete Grundstück Nr. 12 weist ein leichtes Gefälle auf. Zwischen den Bohransatzpunkten B 1 und B 2 wurde eine maximale Höhendifferenz von 0,4 m eingemessen.

4. Ergebnisse

4.1 Baugrund

Durch die am 29. August 2019 abgeteuften Erkundungsbohrungen wurde folgende petrographische Zusammensetzung erkundet.

Zuoberst wurden in den Bohrungen **Auffüllungen (Schicht 1)** erkundet, die sich in nicht bindige und bindige Auffüllungen unterscheiden lassen.

Die **nicht bindigen Auffüllungen (Schicht 1a)** wurden lediglich in der Bohrung 1 bis in eine Tiefe von 0,6 m u. GOK erkundet. Diese setzen sich aus sandigem, schwach schluffigem Kies zusammen, der geringe Mengen (jeweils < 5%) an Ziegel- und Betonbruch sowie Mörtel aufweist. Die graubraune, kiesige Auffüllung wurde in mitteldichter Lagerung erkundet.

Die **bindigen Auffüllungen (Schicht 1b)** wurden in der Bohrung 2 bis in eine Tiefe von 1,5 m u. GOK und in der Bohrung 1 zwischen 0,6 m und 1,8 m u. GOK erbohrt. Der braune bis graubraune, sandige, kiesige Schluff mit Fremdbeimengungen an Ziegelbruch und Kohle wurde in steifer Konsistenz erkundet.

Unterhalb der Auffüllungen wurden die **Terrassensedimente der Rur (Schicht 2)** erbohrt. Diese wurden als schwach kiesige bis kiesige Sande bzw. als stark sandiger Kies aufgeschlossen. In der Bohrung 1 wurden zudem in Tiefen von 2,7 m und 3,9 m u. GOK stark tonige Schlufflinsen in einer Mächtigkeit von ca. 5 cm erkundet. Die braunbeige bis beigeorange Schicht 2 lag zum Zeitpunkt der Erkundung in einer mitteldichten bis dichten Lagerung vor. Die Bohrung 2 musste innerhalb der Terrassensedimente aufgrund zu hoher Bohrwiderstände in 4,2 m u. GOK abgebrochen werden.

4.2 Grundwasser

In den am 29. August 2019 abgeteuften Bohrungen wurde weder Grund- noch Schicht- oder Stauwasser erbohrt. Die Bodenschichten lagen überwiegend im erdfeuchten Zustand vor.

Gemäß der Karte der Grundwassergleichen in Nordrhein-Westfalen [3] befindet sich das Projektgebiet unmittelbar nördlich der Rurrand-Verwerfung. Diese ist als hydraulisch wirksam zu betrachten, woraus in einer Tiefenlage unterhalb von ca. 80 mNN eine lediglich geringe Grundwasserführung resultiert [2]. Bei einer mittleren Höhenlage des Projektgrundstücks von ca. 102 mNN ist somit mit einem Flurabstand von mindestens 22 m auszugehen.

Demnach ist Grundwasser gemäß den Erkundungen nicht von Bedeutung.

Das Projektgelände liegt gemäß der online Auskunft NRW [4] nicht in einer ausgewiesenen oder geplanten Trinkwasserschutzzone.

4.3 Lagerungsdichte / Konsistenz

Die Lagerungsdichte der erkundeten Bodenschichten wird nachfolgend auf Grundlage der mittels der Rammsondierung ermittelten Schlagzahlen N₁₀ der Leichten Rammsonde (DPL nach DIN EN ISO 22476-2, Spitzenquerschnitt 10 cm²) je 10 cm Eindringtiefe in den Untergrund bewertet. Die ermittelten Schlagzahlen sind in der Tabelle 2 sowie als Schlagzahldiagramm in der Anlage 3 dargelegt. Ferner wird die Lagerungsdichte anhand der Bodenansprache vor Ort sowie anhand des Eindringwiderstandes der Rammkernsonde im Zuge der Herstellung der Erkundungsbohrungen beurteilt.

					Sondi	erung DPL					
Tiefe						r Leichten ng in den l					Mittelwert
- 1,0 m	13	21	10	7	8	9	13	13	10	13	11,7
- 2,0 m	3	7	10	34	41	69	74	85			40,38

Tab. 2: Ergebnis der Sondierung mit der Leichten Rammsonde (Spitzenquerschnitt: 10 cm²)

Die Sondierung mit der Leichten Rammsonde erfasst bis in eine Tiefe von 1,3 m u. GOK die bindigen Auffüllungen (Schicht 1b) in steifer Konsistenz, für diesen Bereich wurden Schlagzahlen von N_{10} = 3 - 21 ermittelt. Unterhalb der Auffüllungen wurden die Terrassensedimente (Schicht 2) in mitteldichter bis dichter Lagerung erfasst, für diesen Bereich wurden Schlagzahlen von N_{10} > 30 ermittelt. Innerhalb der Terrassensedimente musste die Sondierung aufgrund zu hoher Schlagzahlen in einer Tiefe von 1,8 m u. GOK abgebrochen werden.

4.4 Bodenkennwerte

Gemäß VOB Teil C und DIN 18300 erfolgt die Einteilung von Boden und Fels in Homogenbereiche entsprechend ihrem Zustand vor dem Lösen. Für die Homogenbereiche sind Eigenschaften und Kennwerte in Bandbreiten anzugeben. Bei Baumaßnahmen der Geotechnischen Kategorie GK 2 nach DIN 4020, zu denen das geplante Bauwerk zählt, sind demnach für die Homogenbereiche Angaben zu Bodengruppen, Korngrößenverteilung, Massenanteilen von Steinen und Blöcken, Dichte sowie je nach Bindigkeit Angaben zur Lagerungsdichte bzw. zu Konsistenz, Plastizität und Scherfestigkeit erforderlich.

Im Projektbereich können zwei Homogenbereiche unterschieden werden (siehe Tabelle 3). Der Homogenbereich II wird aufgrund umweltrelevanter Aspekte zusätzlich in die Homogenbereiche II A und II B unterteilt.

Homogenbereich		Bodenschichten	Beschreibung
Homogenbereich I		Schicht 1b: bindige Auffüllungen	feinkörnige Böden
Homogophoroigh II	Α	Schicht 1a: nicht bindige Auffüllungen	sasklišasias Diidas
Homogenbereich II	В	Schicht 2: Terrassensedimente	grobkörnige Böden

Tab. 3: Festgelegte Homogenbereiche mit den zugehörigen Bodenschichten.

Den vorgenannten Homogenbereichen können die in den Tabellen 4 und 5 aufgeführten Eigenschaften zugeordnet werden. Für die statische Bemessung können, vorbehaltlich einer Prüfung der Übereinstimmung vor Ort, die aufgeführten Bodenkennwerte angenommen werden. Die Bodenkennwerte werden nach den Ergebnissen der anhand der Sondierbohrungen durchgeführten Material- und Konsistenzansprache sowie nach Erfahrungswerten abgeschätzt.

Homogenbereich nach DIN	18 300				
Homogenbereich I	feinkörnige Böden		Schicht 1b: bir	ndige Auffüllungen	
		d ₁₀	= 0,04 - 0,2 mm	H.	
Korngrößenverteilung nach D	IN 18 123	d ₃₀	= 0,07 - 1,0 mm	i i	
		d ₆₀	= 0,08 - 8,0 mm	į	
Massenanteilen von Steinen	und Blöcken nach DIN EN ISO		0 - 20 %		
Dichte nach DIN 18 125-2		ρ	1,85 - 2,10 t/m ³		
undränierte Scherfestigkeit		cU	> 20 - 200 kN/m	1 ²	
Wassergehalt nach DIN EN 1	7892-1	w	5 - 20 %		
Plastizitätszahl nach DIN 18		l _P	0 - 7 %		
Konsistenzzahl nach DIN 18	122-1	lc	0,75 - 1,0 (steif)	_4_	
bezogene Lagerungsdichte n	ach DIN 18 126	lo	-		
Organischer Anteil nach DIN	18 128		≤ 2 M%		
Bodengruppe nach DIN 18 19	96		[UM]		
Bodenklasse nach DIN 18 30	0 (alt)		4, (2)		
Bezeichnung der Bodenkörne	er nach DIN EN 14 688-1		saSi, sagrSi		
Frostempfindlichkeit nach ZT	VE-StB-09		F3, sehr frostempfindlich		
Verdichtbarkeitsklasse nach 2	ZTVA-StB97		V3, weniger gut verdichtbar		
Durchlässigkeitsbeiwert		K f	< 1 x10-6 m/s		
Umweltrelevante Inhaltsstoffe	9		Ziegelbruch, Kohle		
Bodenkennwerte nach Erfa	hrungswerten sowie nach DI	N 1055-2			
Konsistenz:			weich	steif	halbfest
Wichte des feuchten Bodens		γ	20 kN/m³	21 kN/m³	22 kN/m³
Wichte des Bodens unter Auf	trieb	γ'	10 kN/m³	11 kN/m³	12 kN/m³
Reibungswinkel		φ'	22,5 - 27,5°	22,5° - 27,5°	22,5 - 27,5°
Kohäsion		c'	0 kN/m²	2 - 5 kN/m²	5 - 10 kN/m²
Steifemodul		Es	≤ 10 MPa	10 MPa	25 MPa
Tragfähigkeitsbeiwert Ev2		≤ 25 MPa	≤ 25 MPa	≤ 45 MPa	

Tab. 4: Homogenbereich I: feinkörnige Böden mit den zugehörigen Bodenkennwerten

<u>Hinweis</u>: Der feinkörnige Boden der Schicht 1b (Homogenbereich I) kann bei Zutritt von Wasser aufweichen, wodurch eine erhebliche Konsistenzverschlechterung und somit eine deutliche Verminderung der Tragfähigkeit verursacht wird. Ggf. auftretende aufgeweichte Böden im Bereich der Grabensohle sind durch tragfähiges und verdichtungsfähiges Material z.B. Kiessand zu ersetzen.

Homogenbereich nach DIN	18 300					
Homogenbereich II	grobkörnige Böden	A		cht bindige Auffüll	lungen	
Tromogoriborcion ii	grobkoringe boden	В	Schicht 2: Ter	rassensedimente		
		d ₁₀	= 0,1 - 1,5 mm			
Korngrößenverteilung nach D	DIN 18 123	d ₃₀	= 0,2 - 4,0 mm			
		d ₆₀	= 0,6 - 20 mm			
	und Blöcken nach DIN EN ISO 146	88-1	≤ 30 %	**		
Dichte nach DIN 18 125-2		ρ	ca. 1,8 - 2,2 t/m	13		
undränierte Scherfestigkeit		CU	-			
Wassergehalt nach DIN EN I		W	2 - 10 %			
Plastizitätszahl nach DIN 18		l _P	•			
Konsistenzzahl nach DIN 18		lc	- 05 0/ /:#	aldiaka diaka a da	4\	
bezogene Lagerungsdichte n		l _D	35 - 85 % (mitteldicht - dicht gelagert) ≤ 1 M%			
Organischer Anteil nach DIN			LINEYA DESCRIPTION			
Bodengruppe nach DIN 18 19 Bodenklasse nach DIN 18 30			SW, [GW], GW			
	er nach DIN EN ISO 14 688-1		saGr, sigrSa, siclSa, grclSa			
Verdichtbarkeitsklasse nach			V 1: gut verdichtbar			
Frostempfindlichkeit nach ZT			F 1: nicht frostempfindlich			
Durchlässigkeitsbeiwert		kf	> 1 x 10-5 m/s			
Umweltrelevante Inhaltsstoffe	•	Α	Ziegel-, Betonbruch, Mörtelreste			
Bodenkennwerte nach Erfa	hrungswerten sowie nach DIN 10)55-2			V 2000 - 1 TO 1 TO 1 TO 1	
Lagerungsdichte			locker	mitteldicht	dicht	
Wichte des feuchten Bodens		γ	18 kN/m³	19 kN/m³	20 kN/m ³	
Wichte des Bodens unter Auftrieb		γ'	10 kN/m³	11 kN/m³	12 kN/m³	
Reibungswinkel ϕ'		φ'	30° - 32,5°	32,5° - 35°	35° - 37,5°	
Kohäsion		c'	0 kN/m²	0 kN/m²	0 kN/m²	
Steifemodul		Es	80 MPa	100 MPa	100 MPa	
Tragfähigkeitsbeiwert E			≤ 80 MPa	≤ 100 MPa	≤ 120 MPa	

Tab. 5: Homogenbereich II: grobkörnige Böden mit den zugehörigen Bodenkennwerten

4.5 Tektonik und Seismizität

Das Projektgelände liegt im Bereich der Niederrheinischen Bucht und innerhalb dieser auf der Erft-Scholle. Die Niederrheinische Bucht ist durch zahlreiche SE-NW streichende tektonische Verwerfungen und Störungen sowie SW-NE streichende Überschiebungen und Störungen gekennzeichnet. Hierdurch sind zahlreiche antithetisch nach Nordosten verkippte Einzelschollen entstanden.

Ein ruckhafter Abbau aufgestauter Spannungen in Form von episodischen Erdbeben kann nicht ausgeschlossen werden. Im Fall von Erdbeben können insbesondere im Bereich tektonischer Störungen ggf. Versatzbeträge auftreten.

Tektonisch beeinträchtigt wird das Projektgelände durch die südlich verlaufende Rurrand-Verwerfung. Die Bewegungen im Bereich der tektonischen Störungen sind bereichsweise rezent aktiv. Gemäß DIN 4149:2005-04 wird Jülich der Erdbebenzone 3 (Intensitätsintervall 7,5 bis < 8,0, Bemessungswert der Bodenbeschleunigung 0,8 m/s²) zugeordnet. Es liegen die Untergrundklasse S (Gebiete tiefer Beckenstrukturen mit mächtiger Sedimentfüllung) und die Baugrundklasse C vor.

Das geplante Gebäude wird, vorbehaltlich einer dem entgegenstehenden Konstruktion, gemäß DIN 4149 der Bedeutungsklasse II zugeordnet (Bedeutungsbeiwert γ_I = 1,0). Der Nachweis der Standsicherheit für den Lastfall "Erdbeben" ist gemäß den Vorgaben der DIN 4149:2005-04 Kap. 7.1, Absatz (3) zu führen. Ohne

rechnerischen Standsicherheitsnachweis sind oberhalb des Gründungsniveaus maximal 2 Vollgeschosse zulässig, sofern die Bedingungen gemäß Kap. 7.1 der DIN 4149:2005-04 nicht eingehalten werden bzw. zutreffen.

Hinweis: Zur Gewährleistung der Erdbebensicherheit des geplanten Gebäudes ist darauf zu achten, dass die verwendeten Baustoffe für den Einsatz in Bereichen der Erdbebenzone 3 zugelassen sind. Insbesondere Rohrleitungen sollten möglichst aus bewegungsunempfindlichen Materialien (z.B. Gußrohre) erstellt werden, um Schäden aufgrund von Boden- und Bauwerksbewegungen zu vermeiden.

4.6 Ergebnisse der chemischen Untersuchungen

Aus den aufgefüllten und anstehenden Böden im möglichen Aushubbereich wurde die Mischprobe "MP 12: 0,0 - 3,2 m" erstellt und gemäß den Vorgaben der LAGA Bauschutt untersucht.

Die Ergebnisse sind in der Tabelle 6 den Zuordnungswerten der LAGA Bauschutt gegenübergestellt. Der ausführliche Laborbericht ist der Anlage A 1 wiedergegeben.

Die Mischprobe zeigt gemäß den durchgeführten Analysen im Eluat und im Feststoff keine Überschreitungen der Grenzwerte. Demnach ist die Mischprobe "MP 12: 0,0 - 3,2 m" der <u>LAGA-Einbauklasse Z 0</u> nach LAGA Bauschutt zuzuordnen. Die Einordnung von Boden-Bauschutt-Gemengen erfolgt erfahrungsgemäß bei den Entsorgungseinrichtungen jedoch über die Einbauklasse Z 1.2.

Parameter	Labornummer 1911301-003 MP 12 0,0 - 3,2 m	Zuordnungswert für Feststoffe in Bauschutt gemäß LAGA - Nr. 20 [mg/kg]				
Feststoff	Messwert [mg/kg]	Z 0	Z 1.1	Z 1.2	Z 2	
EOX	< 0,8	1	3	5	10	
Kohlenwasserstoffe / GC (C ₁₀ - C ₄₀)	<100	100	300	500	1000	
Kohlenwasserstoffe / GC (C ₁₀ - C ₂₂)	<100	100	300	500	1000	
PAK nach EPA	0,2	1	5 (20)	15 (50)	75 (100)	
PCB	< 0,015	0,02	0,1	0,5	1	
Arsen	5,43	20	30	50	150	
Blei	16,8	100	200	300	1000	
Cadmium	< 0,4	0,6	1	3	10	
Chrom	16,6	50	100	200	600	
Kupfer	9,17	40	100	200	600	
Nickel	12,6	40	100	200	600	
Quecksilber	< 0,1	0,3	1	3	10	
Zink	33,5	120	300	500	1500	

Tab. 6a: Ergebnisse der Untersuchungen nach LAGA 20 Bauschutt an der Probe "MP 12: 0,0 - 3,2 m". Die kursiv geschriebenen Grenzwerte im Feststoff sind keine gültigen Grenzwerte für Bauschutt, dienen jedoch bei der Deklaration als Bewertungsgrundlage.

Parameter	Labornummer 1911301-003 MP 12 0,0 - 3,2 m	Zuordnungswert für Eluate in Bauschutt gemäß LAGA - Nr. 20 [µg/l] (außer *)			
Eluat	Messwert [µg/l] (außer *)	Z 0	Z 1.1	Z 1.2	Z2
pH-Wert* [1]	8,3	7,0-12,5			
Leitfähigkeit* [µS/cm]	40	500	1500	2500	3000
Chlorid* [mg/l]	< 10	10	20	40	150
Sulfat* [mg/l]	< 20	- 50	150	300	600
Phenolindex	< 10	< 10	10	50	100
Arsen	< 10	10	10	40	50
Blei	<7	20	40	100	100
Cadmium	< 0,5	2	2	5	5
Chrom	<7	15	30	75	100
Kupfer	< 10	50	50	150	200
Nickel	< 10	40	50	100	100
Quecksilber	< 0,2	0,2	0,2	1	2
Zink	< 40	100	100	300	400

Tab. 6b: Ergebnisse der Untersuchungen nach LAGA 20 Bauschutt an der Probe "MP 12: 0,0 - 3,2 m". Die kursiv geschriebenen Grenzwerte im Feststoff sind keine gültigen Grenzwerte für Bauschutt, dienen jedoch bei der Deklaration als Bewertungsgrundlage.

Empfehlungen für die Gründung des Gebäudes: Gründungsart, zulässige Bodenpressung, Setzungen

Die OKFFEG wird mit + 0,2 m zur GOK (102,4 mNN) mit einer Bodenplatte von 30 cm inklusive Fußbodenaufbau angenommen. Mit einer angenommenen Tiefe eines ggf. geplanten Kellers von - 2,7 zur GOK liegt die OKFFKG entsprechend bei 99,7 mNN, wobei ebenfalls von einer 0,3 m mächtigen Bodenplatte (inklusive Fußbodenaufbau) ausgegangen wird.

5.1.1 lastabtragende Bodenplatte

Aufgrund der Mächtigkeit der bindigen Auffüllungen sowie der festgestellten steifen Konsistenz wird eine Gründung mittels lastabtragender Bodenplatte oberhalb eines ausreichend dimensionierten Gründungspolsters empfohlen.

Hinsichtlich der Tragfähigkeit und der Frostsicherheit ist eine Mindestmächtigkeit des Gründungspolsters von 0,6 m erforderlich. Gemäß den vorgenannten Annahmen (OKFFEG + 0,2 m zur GOK, Stärke Bodenplatte 0,3 m inklusive Fußbodenaufbau) liegt die Sohle des Polsters bei 0,7 m u. GOK. Oberhalb der bindigen Böden sollte das Gründungspolster oberhalb eines Geotextils hergestellt werden.

Das Polster sollte als Kiessandpolster aus gut kornabgestuftem, verdichtungsfähigem, frostsicherem, mineralischem Baustoff hergestellt werden. Für die Lastabtragung der Bodenplatte, die die Bauwerkslasten übernimmt, sind bei der Plattengründung i. W. die geotechnischen Eigenschaften des aufgefüllten mineralischen Baustoffs maßgebend. Die geotechnischen Eigenschaften der Schichten 1b und 2 sind lediglich für die tieferreichende Lastabtragung und hinsichtlich der Berechnung der Grundbruchsicherheit und der Setzungen von Bedeutung.

Für gut kornabgestufte, mineralische Baustoffe (z. B. Kiessand 0/32, 0/63 oder 0/100, frostsicher, vergleichbar der Bodengruppe GW nach DIN 18196), können die angegebenen Bodenkennwerte der Schicht 2 (Homogenbereich II) Kap. 4.4 angewendet werden. Ferner können für derartige Baustoffe die in den Tabellen 7 und 8 angegebenen Bodenpressungen gemäß DIN 1054:2003-01 bzw. gemäß Tab. A 6.2 des Handbuchs Eurocode 7, Band 1 (Bemessungswerte des Sohlwiderstands, keine aufnehmbaren Sohldrücke und keine zulässigen Bodenpressungen) beurteilt werden.

kleinste Einbindetiefe			ehmbarer Soh fundamenten			
des Fundaments	0,5 m	1,0 m	1,5 m	2,0 m	2,5 m	3,0 m
0,5 m	200	300	330	280	250	220
1,0 m	270	370	360	310	270	240
1,5 m	340	440	390	340	290	260
2,0 m	400	500	420	360	310	280

Tab. 7: höchstzulässige Bodenpressung für nicht bindigen Baugrund und setzungsempfindliches Bauwerk (Auszug aus der Tabelle A.2 der DIN 1054:2003-01), Böden der Bodengruppen GW, SW, SE, (SU)

kleinste Einbindetiefe			swert des Solfundamenten			
des Fundaments	0,5 m	1,0 m	1,5 m	2,0 m	2,5 m	3,0 m
0,5 m	280	420	460	390	350	310
1,0 m	380	520	500	430	380	340
1,5 m	480	620	550	480	410	360
2,0 m	560	700	590	500	430	390

Tab. 8: Bemessungswerte des Sohlwiderstandes $\sigma_{R,d}$ auf nicht bindigen Baugrund GW, SW, GE, SE, SU, GU nach DIN für setzungsempfindliche Bauwerke nach Tab. A 6.2 Eurocode 7

Bei der Bemessung des Polsters sind neben der Mächtigkeit von 0,6 m ein Überstand des Polsters über die Gebäudeaußenkanten (Maße der Bodenplatte) von möglichst 1,0 m, mindestens jedoch dem Betrag der Mächtigkeit des Polsters, sowie ein Böschungswinkel an den Außenkanten des Polsters von max. 45° zu berücksichtigen.

Die Tragfähigkeit des Gründungspolsters sollte mittels Plattendruckversuchen nach DIN 18134 geprüft werden. Es sollte ein Tragfähigkeitsbeiwert von mindestens ca. $E_{V2} = 80$ MPa erreicht werden. Erfahrungsgemäß kann, vorbehaltlich einer Prüfung durch Plattendruckversuche, bei Erreichen des vorgenannten Tragfähigkeitsbeiwerts für den Bettungsmodul k_s ein Wert von 30 MN/m³ angenommen werden.

<u>Hinweis</u>: Der Bettungsmodul ist keine Bodenkonstante. Die Bemessung ist i. W. von der Konstruktion des Bauwerks abhängig und fällt somit in den Verantwortungsbereich des Tragwerksplaners!

Für eine Gründung auf einem Kiessandpolster oberhalb der Schicht 1b (bindige Auffüllungen) ist, da die zulässigen Bodenpressungen nicht nach Abs. 4.2 der DIN 1054 ermittelt werden können, ein Nachweis der zulässigen Bodenpressungen gemäß Abs. 4.3 der DIN 1054 zu führen. Hierfür sind Grundbruch- und Setzungsberechnungen durchzuführen. Für die Schicht 1b können die zulässigen Bodenpressungen gemäß DIN 1054, Tab. A.3 (A.5) bzw. gemäß Tab. A 6.7 des Handbuchs Eurocode 7, Band 1 (Bemessungswerte des Sohlwiderstands, keine aufnehmbaren Sohldrücke und keine zulässigen Bodenpressungen) als Anhaltswerte verwendet werden (siehe Tab. 9 und 10).

kleinste Einbindetiefe des Fundaments [m]	aufnehmbarer Sohldruck σ _{zul} [kN/m²] für Streifenfundamente mit Breiten b bzw. b' von 0,50 m bis 2,00 m mittlere Konsistenz					
	steif	halbfest	fest			
0,5	120	170	280			
1,0	140	210	320			
1,5	160	250	360			
2,0	180	280	400			
mittlere einaxiale Druckfestigkeit <i>q</i> _{u,k} in kN/m²	120 bis 300	300 bis 700	> 700			

Tab. 9: höchstzulässige Bodenpressung O₂ für Streifenfundamente auf tonig schluffigem Böden der Bodengruppen UM, TM, TL nach DIN 18196 (Auszug aus der Tabelle A.5 der DIN 1054: 2003-01)

kleinste Einbindetiefe des Fundaments [m]	Bemessungswert des Sohlwiderstands σ _{R,d} in kN/m² bei Streifenfundamenten mit Breiten b bzw. b' von 0,5 bis 2,0 m mittlere Konsistenz					
	steif	halbfest	fest			
0,5	170	240	390			
1,0	200	290	450			
1,5	220	350	500			
2,0	250	390	560			
mittlere einaxiale Druckfestigkeit $q_{u,k}$ in kN/m ²	120 bis 300	300 bis 700	> 700			

Tab. 10: Bemessungswerte des Sohlwiderstands σ_{Rd} für bindigen Boden der Bodengruppen UM, TM, TL nach DIN 18196 nach Tab. A 6.7 Eurocode 7

Vorbehaltlich der o. g. detaillierten Grundbruch- und Setzungsberechnungen sollte für das geplante Gebäude bei einer Gründung auf einem Gründungspolster eine Setzung des Gründungspolsters in einer Größenordnung von 1 - 2 mm angenommen werden. Die Gesamtsetzung ist mit 1 - 2 cm zu veranschlagen.

5.1.2 Streifenfundamente

Alternativ kann das nicht unterkellerte Gebäude auch auf Streifenfundamenten gegründet werden. Die frostfreie Gründungsebene würde im Falle der Gründung auf Streifenfundamenten in der Schicht 1b liegen. Zur Gewährleistung der Frostsicherheit ist eine Einbindetiefe der Fundamente inkl. der Bodenplatte von min. 0,8 m u. GOK erforderlich.

Zur Unterstützung der Bodenplatte zwischen den Streifenfundamenten sollte die kapillarbrechende Schicht aus gut kornabgestuftem, verdichtetem, mineralischem Baustoff in einer Mindestmächtigkeit von 15 cm erstellt werden.

Für die Gründung des Gebäudes sind in diesem Fall die geotechnischen Eigenschaften der Schicht 1b (bindige Auffüllungen) maßgeblich. Die geotechnischen Eigenschaften der Schichten 1b und 2 sind für die tiefreichende Lastabtragung relevant.

Für die bindigen Böden können die in Kap. 4.4 angegebenen Bodenkennwerte sowie die zulässige Bodenpressungen gemäß DIN 1054, Tab. A.3 (A.5) bzw. gemäß Tab. A 6.7 des Handbuchs Eurocode 7, Band 1 (Bemessungswerte des Sohlwiderstands, keine aufnehmbaren Sohldrücke und keine zulässigen Bodenpressungen) angewendet werden (siehe Tab. 9 und 10).

Vorbehaltlich detaillierter Grundbruch- und Setzungsberechnungen sollte für das geplante Gebäude bei einer Gründung auf Streifenfundamenten innerhalb der Schicht 1b eine Setzung in einer Größenordnung von 3 - 4 cm angenommen werden.

5.2 unterkellertes Gebäude

Die Gründungsebene eines unterkellerten Gebäudes besteht i. W. aus mitteldicht bis dicht gelagerten, anstehenden Terrassensedimenten (Schicht 2).

Die lastabtragende Bodenplatte kann unmittelbar auf den Terrassensedimenten gegründet werden, die nach Erfordernis vorab nachzuverdichten sind. Aufgrund der bereichsweise feinkörnigen Bestandteile in der Schicht 2 wird empfohlen, unterhalb der lastabtragenden Bodenplatte eine kapillarbrechende Schicht in einer Mindestmächtigkeit von 15 cm einzubauen. Bereiche, wo örtlich ggf. bindige Böden oder Schlufflinsen vorliegen, erfordern einen Bodenaustausch bis zum Erreichen der Terrassensedimente. Für den Bodenaustausch kann das Aushubmaterial der Terrassensedimente verwendet werden.

Im Bereich der Gründung sind sowohl für die unmittelbare, als auch die tieferreichende Lastabtragung der Bodenplatten die geotechnischen Eigenschaften der Terrassensedimente maßgebend. Hierfür können die vorab angegebenen Bodenkennwerte für grobkörnige Böden (siehe Kap. 4.4) angewendet werden. Ferner können für derartige Böden die in den Tabellen 8 und 9 angegebenen Bodenpressungen gemäß DIN 1054:2003-01 bzw. gemäß Tab. A 6.2 des Handbuchs Eurocode 7, Band 1 (Bemessungswerte des Sohlwiderstands (keine aufnehmbaren Sohldrücke und keine zulässigen Bodenpressungen) zur Beurteilung herangezogen werden.

Die Tragfähigkeit der Baugrubensohle im Bereich der Gründung sollte mittels Plattendruckversuchen nach DIN 18134 geprüft werden. Es sollte ein Tragfähigkeitsbeiwert von mindestens ca. E_{v2} = 80 MPa erreicht werden. Erfahrungsgemäß kann, vorbehaltlich einer Prüfung durch Plattendruckversuche, bei Erreichen des vorgenannten Tragfähigkeitsbeiwerts für den Bettungsmodul k_s ein Wert von 30 MN/m³ für die statische Bemessung der Bodenplatte angenommen werden.

<u>Hinweis</u>: Der Bettungsmodul ist keine Bodenkonstante. Die Bemessung ist i. W. von der Konstruktion des Bauwerks abhängig und fällt somit in den Verantwortungsbereich des Tragwerksplaners!

Für die maßgebenden Grenzzustände nach EN 1990:2002 ist die geotechnische Bemessung der Gründung nachzuweisen (siehe Handbuch Eurocode 7, Band 1, Kap. 2, Grundlagen der geotechnischen Bemessung). Hierbei sind die in Kap. 2.4 des Handbuchs beschriebenen rechnerischen Nachweise und die in Kap. 2.5 beschriebenen konstruktiven Maßnahmen zu berücksichtigen.

Vorbehaltlich der o. g. detaillierten Grundbruch- und Setzungsberechnungen sollte für das geplante Gebäude bei einer Gründung auf den nachverdichteten Terrassensedimenten eine Setzung in einer Größenordnung von 1 - 2 cm angenommen werden.

6. Empfehlungen für die Bauausführung

6.1 Aushub, Böschungen, Planum

Der Aushub für die Herstellung von Gräben für Grundleitungen sollte mittels eines Tieflöffelbaggers mit glatter Schneide erfolgen. Es wird empfohlen die Arbeiten rückschreitend auszuführen. Im Bereich bindiger Auffül-

lungsböden sollten eine Befahrung mit Radfahrzeugen und eine Bearbeitung mit vibrierenden Geräten (z. B. Rüttelplatte) unterbleiben.

Bis zu einer Tiefe von 1,25 m dürfen Gräben (z. B. für Hausanschlussleitungen) senkrecht ausgeschachtet werden, ab 1,25 m Tiefe sind Gräben geböscht oder verbaut auszuführen. Böschungen können bei Vorliegen einer mindestens steifen Konsistenz in bindigen Böden (Schicht 1b) mit einem Böschungswinkel von 60° angelegt werden. Bei Vorliegen einer nur weichen Konsistenz ist der Böschungswinkel auf 45° zu beschränken. Innerhalb von nicht bindigen Böden (Schichten 1a und 2) sind Böschungen unter 45° anzulegen.

Bei Auftreten von Schichtwasserhorizonten wird empfohlen, die Gräben zu verbauen. Die Gräben für Hausanschlussleitungen sind unter Berücksichtigung der Vorgaben der DIN EN 1610 zu bemessen.

Die bindigen Böden sind wasserempfindlich, hier sollten freigelegte Bereiche je nach Jahreszeit und Witterungsbedingungen gegen Wasserzutritt geschützt werden. Die Baugrubensohle sollte je nach Erfordernis und Dauer der ungeschützten Freilage durch ein ausreichendes Quergefälle (= 6 %) oder durch eine Folienabdeckung geschützt oder möglichst zügig überbaut werden.

6.2 Herstellung eines Gründungspolsters

Das Gründungspolster (Mindestmächtigkeit 0,6 m) sollte in 2 Lagen je ca. 0,3 m hergestellt werden. Der hierzu verwendete mineralische Baustoff (z. B. Kies 0/32, 0/63, 0/100, ggf. RCL) sollte lagenweise eingebaut und verdichtet werden. Im Bereich der bindigen Böden (Schicht 1b) sollte das Gründungspolster oberhalb eines Geotextils (GRK 2) hergestellt werden. Bei Antreffen der bindigen Böden in nur weicher bis steifer Konsistenz sollten bodenverbessernde Maßnahmen ergriffen werden. Hier kann an der Basis des Gründungspolsters eine Bodenverbesserung durch statisches Einwalzen von Grobschlag (z. B. gebrochenes, mineralisches Material der Korngröße 56/100) in den Untergrund erreicht werden. Durch diese Steinskelettierung werden die nur mäßigen Tragfähigkeitseigenschaften der Schicht 1b erfahrungsgemäß deutlich verbessert.

Um die Konsistenz dieser Böden nicht nachteilig zu beeinträchtigen, muss eine Verdichtung der unteren Lage des Gründungpolsters mit vibrierenden Verdichtungsgeräten (exkl. Schaffußwalze) unterbleiben. Erst ab der zweiten Lage dürfen vibrierende Verdichtungsgeräte eingesetzt werden.

Bei der Bemessung des Polsters sind neben der Mächtigkeit von 0,6 m ein Überstand des Polsters über die Gebäudeaußenkanten (Maße der Bodenplatte) von möglichst 1,0 m, mindestens jedoch dem Betrag der Mächtigkeit des Polsters, sowie ein Böschungswinkel an den Außenkanten des Polsters von max. 45° zu berücksichtigen.

Für die nicht bindigen, mineralischen Baustoffe sind mit einer Glattmantelwalze ohne Vibration 4 - 8 Übergänge vorzusehen. Bei einem Einsatz einer vibrierenden Walze oder einer schweren Rüttelplatte sind 4 - 6 Übergänge erforderlich.

<u>Anmerkung:</u> Sollte beabsichtigt werden, das Gründungspolster aus güteüberwachten RC-Baustoffen herzustellen, ist ein Antrag auf Erteilung einer Wasserrechtlichen Erlaubnis zu stellen. Prinzipiell sind die geologischen Standortbedingungen des Projektgeländes im Hinblick auf die Verwendung von RCL infolge des verhältnismäßig großen Grundwasserflurabstands als "günstig" zu bezeichnen.

6.3 Wasserhaltung

Im Zuge der Baugrunderkundung wurde kein freier Grundwasserspiegel angetroffen. Gemäß den ausgewerteten Unterlagen ist mit einem Flurabstand von mindestens 22 m zu rechnen. Es kann davon ausgegangen

werden, dass für das geplante Bauvorhaben Grundwasser nicht relevant ist. Innerhalb der bindigen Böden kann eine episodische Schichtwasserführung oder Staunässe auftreten.

Anfallendes Tag- oder Schichtwasser kann in den bindigen Auffüllungen (Schicht 1b) nicht ausreichend versickern und muss über eine offene Wasserhaltung mittels Pumpensumpf und Pumpen entfernt werden. Um Schäden durch Erosion und Aufweichung der bindigen Böden vorzubeugen, ist im Zuge der Bauausführung darauf zu achten, dass bei Niederschlagsereignissen kein Oberflächenwasser in die Grube oder die Gräben fließen kann.

6.4 Abdichtung, Frostsicherheit

Für die erdberührten Teile des Gebäudes bei nicht unterkellerter Bauweise wird gemäß DIN 18533-1: 2017-07 eine Abdichtung gegen Bodenfeuchte und nicht drückendes Wasser nach W 1.1-E empfohlen. Eine kapillarbrechende Schicht unterhalb der Bodenplatte von 15 cm Mächtigkeit ist in jedem Fall vorzusehen, diese ist im Falle einer Gründung auf einem Gründungspolster gegeben, sofern diese der Anforderung an die Frostsicherheit genügen. Innerhalb der bindigen Auffüllungen kann der Nachweis über eine ausreichende Wasserdurchlässigkeit (kf-Wert > 10-4 m/s) nicht geführt werden, daher ist die Abdichtung durch eine Drainage zu ergänzen (W 1.2 E).

Der zur Gewährleistung der Frostsicherheit der Gebäudegründung erforderliche frostsichere Aufbau in einer Mindeststärke von 0,8 m ist im Falle der Herstellung eines mindestens 0,6 m mächtigen Gründungspolsters aus frostsicherem Material und einer 0,3 m mächtigen Bodenplatte des Gebäudes bereits gegeben. Streifenfundamente sollten - inkl. Bodenplatte - mindestens 0,8 m in den Untergrund einbinden.

Bei einem unterkellerten Wohnhaus ist eine Abdichtung nach DIN 18533-1: 2017-07 gegen Bodenfeuchte und nicht drückendes Wasser für die Bodenplatte und die erdberührten Teile nach W 1.1-E möglich, sofern der Baugrund die Mindestanforderung an die Wasserdurchlässigkeit (kf-Wert > 10-4 m/s) erfüllt. Zur Verifizierung dieses Sachstands wird die Ermittlung der tatsächlichen Wasserdurchlässigkeit mittels Nasssiebung des anstehenden Bodens empfohlen. Andernfalls ist die Abdichtung durch eine Drainage zu ergänzen (W 1.2 E).

Für die Wandsockel oberhalb des Erdbodens sollte nach DIN 18533-1: 2017-07 ein Schutz gegen Spritzwasser entsprechend W 4-E vorgesehen werden.

Die Festlegung der tatsächlich zur Ausführung kommenden Abdichtung obliegt dem zuständigen Fachplaner.

6.5 Wiederverwendbarkeit des Aushubbodens

Der Bodenaushub aus den nicht bindigen Auffüllungen (Schicht 1a) und den Terrassensedimenten (Schicht 2) ist prinzipiell für eine setzungs- und sackungsfreie Rückverfüllung in Arbeitsräume oder Gräben geeignet. Der Bodenaushub aus dem Bereich der bindigen Böden (Schicht 1b) ist prinzipiell nicht für eine setzungs- und sackungsfreie Rückverfüllung in Arbeitsräume oder Gräben geeignet, kann jedoch zur Profilierung des Geländes verwendet werden oder muss abgefahren werden.

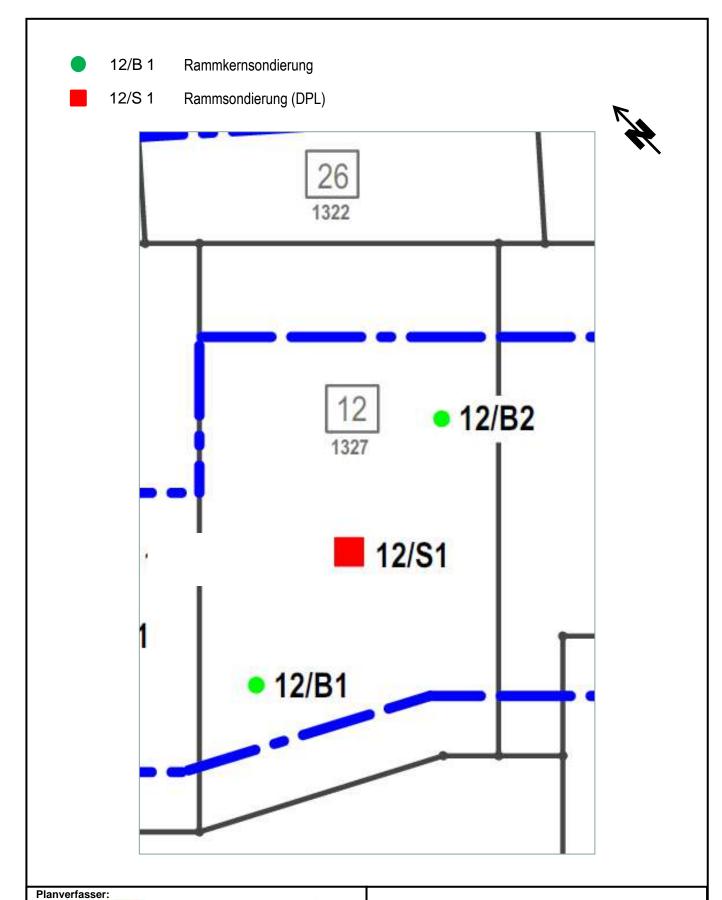
Gemäß den durchgeführten Analysen an der Mischprobe "MP 12: 0,0 - 3,2 m" ist das Material der LAGA-Einbauklasse Z 0 nach LAGA Bauschutt zuzuordnen und als solches wiederzuverwerten oder zu entsorgen. Die Einordnung von Boden-Bauschutt-Gemengen erfolgt erfahrungsgemäß bei den Entsorgungseinrichtungen jedoch über die Einbauklasse Z 1.2.

Im Falle von Rückfragen und eine weitergehende Beratung stehen wir Ihnen gerne zur Verfügung.

IQ Ingenieurgesellschaft Quadriga mbH

Dipl.-Geol. BDG

Durchwahl: -25 H.Seeberger@IQ-mbH.de


Gudrun Damm

M. Sc.

Durchwahl: -214 G.Damm@IQ-mbh.de

Anlagen:

	Lageplan
1 - 2	Bohrprofile der Bohrungen
1.1 - 2.1	Schichtenverzeichnisse der Bohrungen
3	Sondierdiagramm
4 - 5	Profilschnitt
6	Legende
A 1	Laborbericht der Analyse nach LAGA Bauschutt

T lalive lasser.

Ingenieurgesellschaft Quadriga mbH

Monnetstraße 24 52146 Würselen Tel.: 0 24 05 / 8 02 90-0 Fax: 0 24 05 / 8 02 90-29 e-mail: info@lQ-mbH.de www.lQ-mbH.de

Freianlagen-, Straßen-, Wegeplanung - Kanalisations-, Entwässerungsplanung Bauleitung und Bauüberwachung - SiGe-Koordination - Baugrundgutachten Hydrogeologische Gutachten - Altlastengutachten - Gefährdungsabschätzungen

Baumaßnahme:

Erschließung Bebauung Nr. A 14 "Alte Fachhochschule" Baugrunderkundung

Grundstück 12

Lageskizze der Ansatzstellen

<u>Auftraggeber:</u> SEG Jülich mbH & Co. KG

52146 Würselen

ISO 22476-2

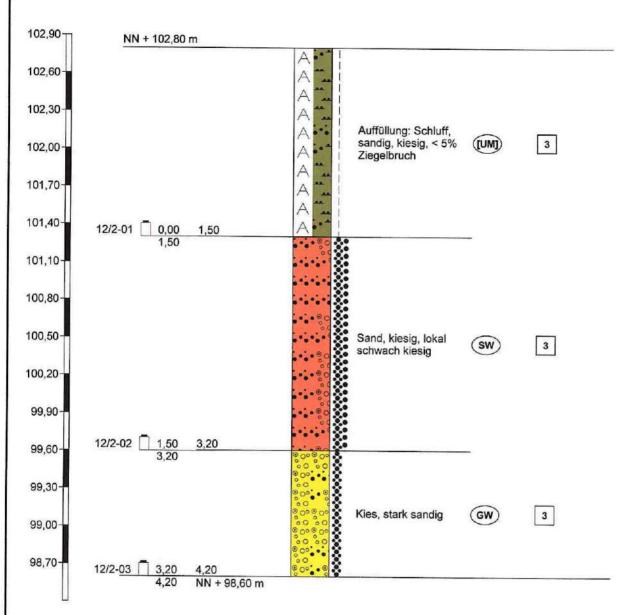
Auftraggeber: SEG Jülich

Datum: 29.08.2019

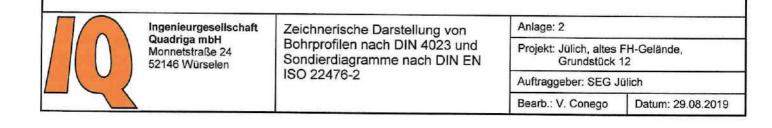
Bearb.: V. Conego

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben


Anlage 1.1

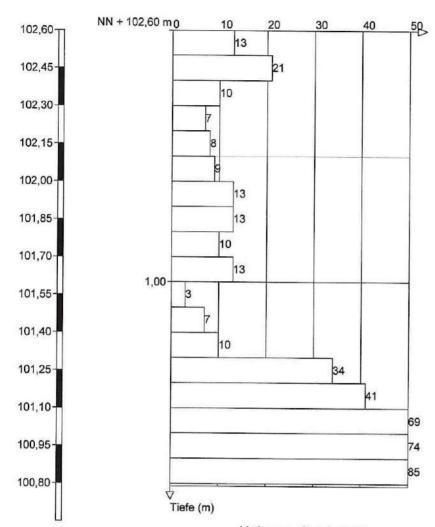
Bericht:


Az.:

Bauvorhaben: Jülich, altes FH-Gelände, Grundstück 12

Bohru	bhrung Nr 12/B1 /Blatt 1							Datum: 29.08.2019			
1			2					3	4	5	6
D:-	a)	a) Benennung der Bodenart und Beimengungen						Bemerkungen	Entnommene Proben		
Bis	b) Ergänzende Bernerkungen 1)						Sonderprobe Wasserführung			Tiefe	
unter Ansatz-	c)	Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e)	Farbe			Bohrwerkzeuge Kernverlust	Art	Nr.	in m (Unter-
punkt	f)	Übliche Benennung	g) Geologische ¹) Benennung	h)) ¹) Gruppe	i)	Kalk- gehalt	Sonstiges			kante)
0,60	a) Auffüllung: Kies, sandig, schwach schluffig, ca. 5% Ziegelbruch, < 5% Betonbruch, Mörtel							Rammkernsonde D = 60 mm	12/	1-01	0,60
	b)										
	c)	mitteldicht gelagert	d) mittelschwer zu bohren	e)	graubr	aun		(RKS 60) erdfeucht			
	f)	Auffüllung	g)	h)	[GW]	i)	+				
	a) Auffüllung: Schluff, sandig, kiesig, Ziegelbruch, Kohle							12/	1-02	1,80	
	b)	b)					RKS 60				
1,80	c)	steif	d) mittelschwer bis leicht zu bohren	e)	graubra braun	aun	bis	feucht			
	f)	Auffüllung	g)	h)	[UM]	i)	0/+				
	Sand, schwach kiesig, lokal kiesig-tonig, bei 2,7 m und 3,9 m Schluff-Linse, stark tonig (ca. 5 cm)						RKS 60/50/40	12/1-	03	4,30	
	b)										
4,30	c)	mitteldicht bis dicht gelagert	d) mittelschwer bis schwer zu bohren	e) beigebraun bis beigeorange		feucht					
	f)	Terrassensedimente	g)	h)	SW, TL	i)					
	Sand, kiesig, lokal Einlagerungen aus Feinsand, mittelsandig, schwach schluffig							12/	1-04	6,00	
0.00							RKS 40 erdfeucht				
6,00	c)	mitteldicht bis dicht gelagert	d) mittelschwer bis schwer zu bohren	e) hellbeige bis beigeorange			ENDTEUFE				
	f)	Terrassensedimente	g)	h)	SW	i)	0				
	a)										
	b)										
	c)		d)	e)	1						
	f)		9)	h)		i)					
1) Eint	tragi	ung nimmt der wissens	schaftliche Bearbeiter vor.						V		

Höhenmaßstab 1:30



Schichtenverzeichnis

Anlage 2.1

Bericht: für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: Bauvorhaben: Jülich, altes FH-Gelände, Grundstück 12 Datum: Bohrung Nr 12/B 2 /Blatt 1 29.08.2019 2 3 4 5 a) Benennung der Bodenart Entnommene und Beimengungen Bemerkungen Proben Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe . . . m Bohrwerkzeuge unter in m c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unter-Ansatznach Bohrqut nach Bohrvorgang punkt Sonstiges kante) h) ¹) Gruppe Übliche Geologische 1) i) Kalk-Benennung Benennung gehalt 12/ 2-01 1,50 Auffüllung: Schluff, sandig, kiesig, < 5% Ziegelbruch Rammkernsonde Flusskiese D = 60 mm1,50 c) mitteldicht gelagert d) mittelschwer zu e) braun bis (RKS 60) erdfeucht bohren graubraun h) [UM] Auffüllung 12/ 2-02 3,20 Sand, kiesig, lokal schwach kiesig RKS 60/50 3,20 c) dicht bis mitteldicht d) schwer bis e) braunbeige erdfeucht mittelschwer zu gelagert f) h) SW i) 0 Terrassensedimente 12/ 2-03 4,20 Kies, stark sandig b) RKS 50/40 erdfeucht 4,20 e) braunbeige dicht gelagert schwer zu bohren Kein Bohrfortschritt **ENDTEUFE** h) GW g) Terrassensedimente a) b) c) d) e) f) g) h) i) a) b) c) d) e) f) h) i) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

12/DPL 1

Höhenmaßstab 1:15

Ingenieurgesellschaft Quadriga mbH Monnetstraße 24 Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 und Sondierdiagramme nach DIN EN ISO 22476-2

Anlage: 3

Projekt: Jülich, altes FH-Gelände, Grundstück 12

Auftraggeber: SEG Jülich

Bearb.: V. Conego

Datum: 29.08.2019

Boden- und Felsarten

Auffüllung, A

Sand, S, sandig, s

Ton, T, tonig, t

Kies, G, kiesig, g

Schluff, U, schluffig, u

Korngrößenbereich

f - fein m - mittel

g - grob

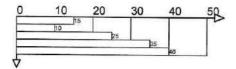
Nebenanteile

- - schwach (<15%) - stark (30-40%)

Ingenieurgesellschaft Quadriga mbH Monnetstraße 24 52146 Würselen

Legende und Zeichenerklärung nach DIN 4023

Anlage: 6


Projekt: Jülich, altes FH-Gelände, Grundstück 12

Auftraggeber: SEG Jülich

Bearb.: G. Damm

Datum: 12.11.2019

Rammdiagramm

Bodenklassen nach DIN 18300

1 Oberboden (Mutterboden)

3 Leicht lösbare Bodenarten

5 Schwer lösbare Bodenarten

7 Schwer lösbarer Fels 2 Fließende Bodenarten

4 Mittelschwer lösbare Bodenarten

6 Leicht lösbarer Fels und vergleichbare Bodenarten

Bodengruppen nach DIN 18196

(GE) enggestufte Kiese

GI Intermittierend gestufte Kies-Sand-Gemische

(SW) weitgestufte Sand-Kies-Gemische

GU) Kies-Schluff-Gemische, 5 bis 15% <=0.06 mm

GT Kies-Ton-Gemische, 5 bis 15% <=0,06 mm

SU) Sand-Schluff-Gemische, 5 bis 15% <= 0,06 mm

ST) Sand-Ton-Gemische, 5 bis 15% <=0,06 mm

UL) leicht plastische Schluffe

UA ausgeprägt zusammendrückbarer Schluff

(MT) mittelplastische Tone

OU) Schluffe mit organischen Beimengungen

grob- bis gemischtkörnige Böden mit OH) Beimengungen humoser Art

HN nicht bis mäßig zersetzte Torfe (Humus)

Schlämme (Faulschlamm, Mudde, Gyttja, Dy, F Sapropel)

Auffüllung aus Fremdstoffen

GW) weitgestufte Kiese

SE) enggestufte Sande

SI Intermittierend gestufte Sand-Kies-Gemische

(GU*) Kies-Schluff-Gemische, 15 bis 40% <= 0.06 mm

GT*) Kies-Ton-Gemische, 15 bis 40% <= 0.06 mm

(SU*) Sand-Schluff-Gemische, 15 bis 40% <= 0.06 mm

ST* Sand-Ton-Gemische, 15 bis 40% <=0,06 mm

UM) mittelplastische Schluffe

TL) leicht plastische Tone

TA) ausgeprägt plastische Tone

OT) Tone mit organischen Beimengungen

grob- bis gemischtkörnige Böden mit kalkigen, OK) kieseligen Bildungen

HZ) zersetzte Torfe

Auffüllung aus natürlichen Böden

Lagerungsdichte

locker mitteldicht dicht

Konsistenz breiig weich steif halbfest fest

Ingenieurgesellschaft Quadriga mbH Monnetstraße 24 52146 Würselen

Legende und Zeichenerklärung nach DIN 4023

Anlage: 6

Projekt: Jülich, altes FH-Gelände, Grundstück 12

Auftraggeber: SEG Jülich

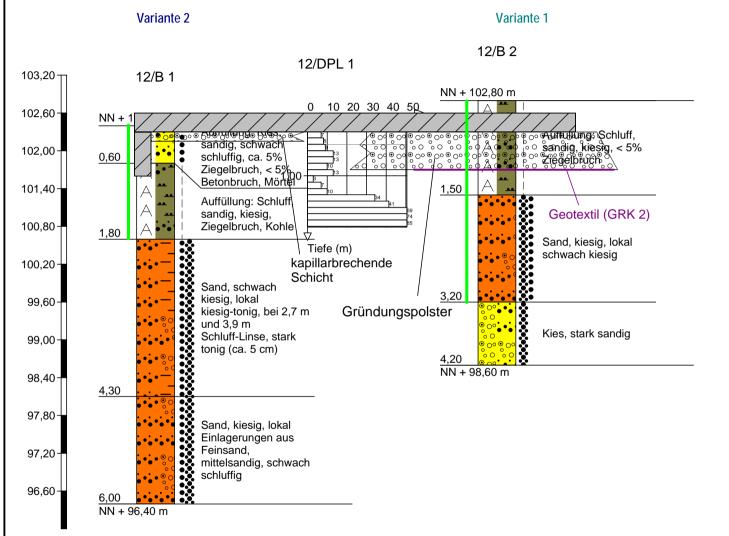
Bearb.: G. Damm Datum: 12.11.2019

-				
	<u>Proben</u>			
	P1 1,00	Sonderprobe Nr 1 aus 1,00 m Tiefe	K1 1,00	Bohrkern Nr 1 aus 1,00 m Tiefe
	WP1 1,00	Wasserprobe Nr 1 aus 1,00 m Tiefe	GL1 1,00	Probenglas Nr 1 aus 1,00 m Tiefe
	HS1 1,00	Head-Space Nr 1 aus 1,00 m Tiefe	SZ1 1,00	Stechzylinder Nr 1 aus 1,00 m Tiefe
	KE1 <u>1,00</u>	Kunststoffeimer Nr 1 aus 1,00 m Tiefe		

Ingenieurgesellschaft Quadriga mbH Monnetstraße 24 52146 Würselen

Legende und Zeichenerklärung nach DIN 4023

Anlage: 6


Projekt: Jülich, altes FH-Gelände, Grundstück 12

Auftraggeber: SEG Jülich

Bearb.: G. Damm

Datum: 12.11.2019

Grundstück 12 nicht unterkellerte Gründungsvariante

Variante 1: Herstellung eines Gründungspolsters nach folgenden Kriterien:

- Mächtigkeit: min. 60 cm
- Baustoff: gut kornabgestuft, frostsicher, mineralisch (z. B. Kiessand: 0/32, 0/63, 0/100, ggf. RCL)
- Einbau lagenweise (je 30cm), bei bindigen Böden oberhalb eines Geotextils (GRK 2)
- Verdichtung: lagenweise je 30 cm, unterste Lage oberhalb bindiger Böden keinesfalls vibrierend. Glattwalze ohne Vibration 4 - 8 Übergänge. Vibrierende Walze oder schwere Rüttelplatte 4 - 6 Übergänge.

Variante 2: Streifenfundamente nach folgenden Kriterien:

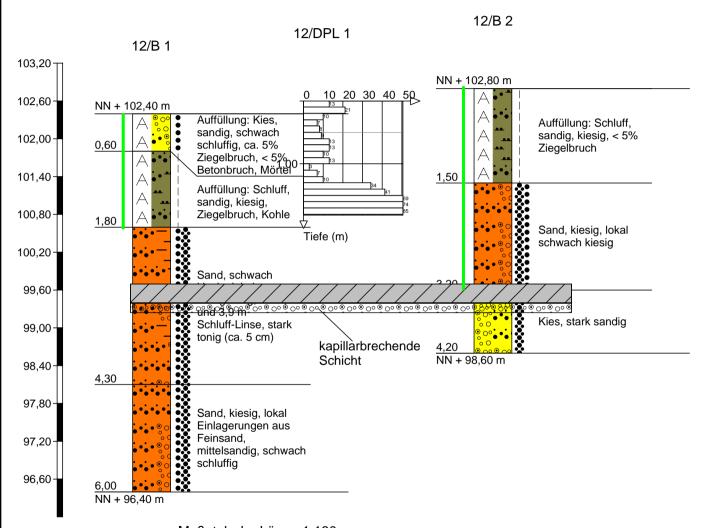
- Mindesteinbindetiefe der Streifenfundamente inklusive Bodenplatte 0,8 m u. GOK
- Einbau kapillarbrechender Schicht aus gut kornabgestuftem, frostsicherem, mineralischem Baustoff (s. o.) unterhalb der Bodenplatte in min. 15 cm Mächtigkeit
- ggf. Steinskeketierung im Bereich bindiger Böden unterhalb der Fundamente

MP 12: 0,0 - 3,2 m LAGA Bauschutt: Z 0

Maßstab der Länge 1:180 Maßstab der Höhe 1:60 3-fach überhöht

Profilschnitt - Bohrprofile nach DIN 4023

Anlage: 4


Projekt: Jülich, altes FH-Gelände, Grundstück 12

Auftraggeber: SEG Jülich

Bearb.: G. Damm

Datum: 12.11.2019

Grundstück 12 unterkellerte Gründungsvariante

lastabtragende Bodenplatte

- im Bereich der anstehenden Terrassensedimente Gründung unmittelbar auf den anstehenden, ggf. nachverdichteten Terrassensedimenten
- Einbau kapillarbrechender Schicht aus gut kornabgestuftem, frostsicherem, mineralischem Baustoff unterhalb der Bodenplatte in min. 15 cm Mächtigkeit

MP 12: 0,0 - 3,2 m LAGA Bauschutt: Z 0

Maßstab der Länge 1:180 Maßstab der Höhe 1:60 3-fach überhöht

Profilschnitt - Bohrprofile nach DIN 4023

Anlage: 5

Projekt: Jülich, altes FH-Gelände, Grundstück 12

Auftraggeber: SEG Jülich

Bearb.: G. Damm Datum: 12.11.2019

GEOTAIX UMWELTTECHNOLOGIE GMBH SCHUMANSTR. 29 52146 WÜRSELEN

UMWELTTECHNOLOGIE GMBH

Chemische Untersuchung von Feststoffproben

Seite 1/3

(gem. LAGA 20 für "Recyclingbaustoffe/nicht aufbereiteten Bauschutt", Stand 6. November 1997)

Auftraggeber:

IQ Ingenieurgesellschaft Quadriga mbH, Würselen

Unsere Auftragsnummer: 1911301

Projekt:

2018-01-03 Jülich, Alte FH

Probeneingang:

10.09.2019

Probenahme:

Anlieferung

Labornummer	1911301		Zuordnungswerte				
Probenbezeichnung	MP 12 (0,0	- 3,2 m)	ZO	Z 1.1	Z 1.2	Z2	
1. Eluat	DIN EN 12457-4						
pH-Wert (bei 20 °C)	DIN EN ISO 10523	8,3		7.0	-12,5		-
Leitfähigkeit	DIN EN 27888	40	500	1500	2500	3000	μS/cm
Chlorid	DIN EN ISO 10304-1	< 10	10	20	40	150	mg/l
Sulfat	DIN EN ISO 10304-1	< 20	50	150	300	600	mg/i
Phenolindex	DIN EN ISO 14402	< 10	< 10	10	50	100	
Arsen	DIN EN ISO 17294-2	< 10	10	10	40	50	µg/l
Blei	DIN EN ISO 17294-2	<7	20	40	100	100	µg/l
Cadmium	DIN EN ISO 17294-2	< 0.5	2	2	5	5	µg/l
Chrom	DIN EN ISO 17294-2	< 7	15	30	75	100	μg/l
Kupfer	DIN EN ISO 17294-2	< 10	50	50	150	200	µg/l
Nickel	DIN EN ISO 17294-2	< 10	40	50	100	100	µg/l
Quecksilber	DIN EN ISO 12846	< 0,2	0,2	0,2	1	2	μg/l
Zink	DIN EN ISO 17294-2	< 40	100	100	300	400	µg/l
2. Originalsubstanz: bez. auf TS			1	100	300	400	µg/l
EOX	DIN 38414-S 17	< 0,8	1	3	5	10	mg/kg
KW/GC (C ₁₀ -C ₄₀)	DIN EN 14039 (LAGA KW/04)	< 100	100	300	500	1000	mg/kg
KW/GC (C ₁₀ -C ₂₂)	DIN EN 14039 (LAGA KW/04)	< 100	100	300	500	1000	mg/kg
PAK (EPA-Liste)	DIN EN 15527	0,2	1	5 (20)	15 (50)	75 (100)	mg/kg
PCB (n. DIN)	DIN EN 15308	< 0,015	0,02	0,1	0,5	1	mg/kg
Arsen	DIN EN ISO 17294-2	5,43	20				mg/kg
Blei	DIN EN ISO 17294-2	16,8	100				mg/kg
Cadmium	DIN EN ISO 17294-2	< 0,4	0,6				mg/kg
Chrom	DIN EN ISO 17294-2	16,6	50				mg/kg
Kupfer	DIN EN ISO 17294-2	9,17	40				
Nickel	DIN EN ISO 17294-2	12,6	40				mg/kg
Quecksilber	DIN EN ISO 12846	< 0,1	0,3				mg/kg
Zink	DIN EN ISO 17294-2	33,5	120				mg/kg mg/kg

Würselen, den 20.09.2019

Christopher Braun stv. Laborleiter

<u>Chemische Untersuchung von Feststoffproben</u> (gem. LAGA 20 für "Recyclingbaustoffe/nicht aufbereiteten Bauschutt", Stand 6. November 1997)

Seite 2/3

Untersuchungsparameter: PAK gem. EPA-Liste im Feststoff

Analysenverfahren: DIN EN 15527

Untersuchungsergebnisse:

PAK [mg/kg TS]	K [mg/kg TS]				
Labornummer	1911301-003				
Probenbezeichnung	MP 12 (0,0 - 3,2 m)				
Einzelverbindungen					
Naphthalin	< 0,03				
Acenaphthylen	< 0,03				
Acenaphthen	< 0,03				
Fluoren	< 0,03				
Phenanthren	< 0,03				
Anthracen	< 0,03				
Fluoranthen	0,06				
Pyren	0,04				
Benzo(a)anthracen	< 0,03				
Chrysen	0,04				
Benzo(b)fluoranthen	0,06				
Benzo(k)fluoranthen	< 0,03				
Benzo(a)pyren	< 0,03				
Dibenzo(a,h)anthracen	< 0,03				
Benzo(ghi)perylen	< 0,03				
Indeno(1,2,3-cd)pyren	< 0,03				
Summe EPA-PAK	0,2				

GEOTAIX UMWELTTECHNOLOGIE GMBH SCHUMANSTR. 29 52146 WÜRSELEN

Seite 3/3

<u>Chemische Untersuchung von Feststoffproben</u> (gem. LAGA 20 für "Recyclingbaustoffe/nicht aufbereiteten Bauschutt", Stand 6. November 1997)

Untersuchungsparameter: Polychlorierte Biphenyle (PCB) im Feststoff

Analysenverfahren: DIN EN 15308

Untersuchungsergebnisse:

[mg/kg TS]				
Labornummer	1911301-003			
Probenbezeichnung	MP 12 (0,0 - 3,2 m)			
PCB 28	< 0,005			
PCB 52	< 0,005			
PCB 101	< 0,005			
PCB 153	< 0,005			
PCB 138	< 0,005			
PCB 180	< 0,005			
Summe PCB (DIN)	< 0,015			

PROBENAHMEPROTOKOLL

Projektdaten:

Ort der Probenahme: Jülich, alte FH

(Ort / Straße: Objekt / Lage)

Probenbezeichnung: MP 12 (0,0 - 3,2 m)

Probenehmer: Bastian Miß

Probenahmedatum: 29. August 2019 und -zeit: 09:00 - 10:00 Uhr

Vermutete Schadstoffe: Schwermetalle

Grund der Probenahme: x Deklarationsanalytik,

Identifikationsanalytik

Weitere Angaben:

Herkunft des Abfalls: Probe aus Rammkernsondierung

Abfallerzeuger: SEG Jülich mbH & Co. KG

Abfallart / Allgemeine Beschreibung: Kies, Schluff, Sand, Ziegelbruch, Betonbruch, Mörtel, Kohle

AVV-Nr.: 170504

Aussehen / Konsistenz / Geruch / Farbe: erdfeucht, geruchslos, braun bis graubraun

Lagerungsdauer: ☐ unbekannt, 12 Tage (Stunden, Tage, Monate, Jahre)

Art der Lagerung (Witterungseinfluss): ☐ Halle, ☐ Abgeplant, x in Kellerraum

Probenahmegerät: ☐ Probenahmespeer, ☐ Handschneckenbohrer, ☐ Schaufel, X Rammkernsonde

Material des Probenahmegerätes: ☐ Eisen, x Edelstahl, ☐ Kunststoff_____

Probenahmeverfahren: ☐ ruhende Haufwerksbeprobung, ☐ ausgebreitete Haufwerksbeprobung, X aus Rammkernsondierung

Mischprobe: 12/1-01: 0,00 - 0,60 m

12/1-02: 0,60 - 1,80 m 12/2-01: 0,00 - 1,50 m 12/2-02: 1,50 - 3,20 m

Probentransport und -lagerung: Kühlung x Nein, ☐ Ja (evtl. Kühltemperatur: _____°C)

Transportbeginn 14:00 Uhr 29.08.2019

Transportende 16:00 Uhr 29.08.2019

Transportbeginn 16:00 Uhr 10.09.2019

Transportende 16:15 Uhr 10.09.2019

Vor-Ort-Untersuchung: organoleptische Ansprache____

Beobachtungen bei der Probenahme / Bemerkungen: unauffällig

Ouadriga mbH
Monnetstraße 24
52146 Würselen
Tel.: 02405/8 02 90-0 Fak: 862 98-29

Würselen / 07.11.2019 Unterschrift(en):