

Ingenieurgesellschaft Quadriga mbH

> Monnetstraße 24 52146 Würselen

Fax: 0.24 05 / 8 02 90 - 29 e-mail: info@IQ-mbH.de www IQ-mbH de

Ingenieurgesellschaft Quadriga mbH_

Stadtentwicklungsgesellschaft mbH & Co. KG (SEG Jülich) Große Rurstraße 17

52428 Jülich

Monnetstraße 24 • 52146 Würselen

Projekt 2018-01-03 DaGa20-01-21SEG-Nr.58 Ihr(e) Ansprechpartner Holger Seeberger/Gudrun Damm

21. Januar 2020

Baumaßnahme: Jülich, ehemaliges FH-Gelände Neubau von Wohnhäusern - Grundstück 58 Baugrunderkundung

Vorgang, Aufgabenstellung:

Die Stadtentwicklungsgesellschaft mbH & Co. KG, Jülich, veräußert die Grundstücke des Erschließungsgebiets "Alte Fachhochschule" in Jülich. Auf den Grundstücken sollen nachfolgend Wohnhäuser in unterkellerter oder nicht unterkellerter Bauweise errichtet werden. Dieses Gutachten befasst sich mit dem Grundstück 58. Es wird sowohl die Gründung für ein nicht unterkellertes als auch für ein unterkellertes Wohnhaus betrachtet.

Die IQ Ingenieurgesellschaft Quadriga mbH, Würselen, wurde am 23. August 2018 von der Stadtentwicklungsgesellschaft mbH & Co. KG mit der Erkundung und Beurteilung des Baugrunds beauftragt. Grundlage der Beauftragung ist das Angebot der IQ Ingenieurgesellschaft Quadriga mbH vom 31. Januar 2018.

2. Grundlagen der Beurteilung

Zur Erkundung des Baugrunds und der Grundwasserverhältnisse wurden am 07. August 2019 zwei Bohrungen mit der Rammkernsonde sowie eine Sondierung mittels Schwerer Rammsonde (DPH) durchgeführt. Die Bohrungen mussten aufgrund zu hoher Bohrwiderstände in Tiefen von 1,5 - 4,4 m u. GOK vorzeitig beendet werden. Aufgrund zu hoher Schlagzahlen wurde auch die Sondierung mit der Schweren Rammsonde in einer Tiefe von 5,7 m u. GOK abgebrochen.

Die Ansatzstellen der Bohrungen und der Sondierung wurden auf einem Lageplan eingetragen. Die Bohrprofile sind in den Anlagen 1 und 2 (Legende: Anlage 6) im Maßstab 1:20 bzw. 1:30 dargestellt. Die Schichtenverzeichnisse gemäß DIN EN ISO 14688 sind den Anlagen 1.1 und 2.1 zu entnehmen. In der Anlage 3 ist das

Planung von Freianlagen, Straßen und Wegen • Planung von Kanalisations-, Entwässerungs- und Versickerungsanlagen • Bauleitung und Bauüberwachung Begleitung von Bauwerkssanierungen • SiGe-Koordination • Baugrundgutachten • Hydrogeologische Gutachten • Altlastengutachten und Gefährdungsabschätzungen

Sondierdiagramm der Sondierung gemäß DIN EN ISO 22476-2 im Maßstab 1:30 aufgeführt. Ferner wurden aus den Bohrprofilen und dem Rammdiagramm zwei Profilschnitte (Anlagen 4 und 5) konstruiert. Der Maßstab der Länge beträgt jeweils 1:125, der Maßstab der Höhe beträgt jeweils 1:50, die Profilschnitte sind somit 2,5-fach überhöht. In Anlage 4 wurde die Gründungsempfehlung für ein nicht unterkellertes Wohnhaus dargestellt, in Anlage 5 die für ein unterkellertes Wohnhaus.

Aus dem Bohrgut der Bohrungen wurden im Zuge der geologischen Aufnahme des Bohrguts insgesamt 5 gestörte Bodenproben entnommen (siehe Bohrprofile und Schichtenverzeichnisse). Die Bodenproben wurden organoleptisch beurteilt.

Zur Bestimmung des Entsorgungsweges der Aushubböden sowie zur Prüfung auf eine potentielle schädliche Bodenverunreinigung wurden die in Tabelle 1 aufgeführten Laboruntersuchungen im chemisch-analytischen Labor GEOTAIX Umwelttechnologie GmbH, Schumanstraße 29, 52146 Würselen, durchgeführt.

Probe	Probe: Tiefe	Art	Analyse	Labornummer	Anlage
MP 58: 0,0 - 3,6 m	58/1-01: 0,0 - 1,2 m 58/1-02: 1,2 - 1,5 m 58/2-01: 0,0 - 0,9 m 58/2-02: 0,9 - 3,6 m	Kies, sandig, schluffig, mit Kalksteinschotter	LAGA Boden	1911301-033	A 1

Tab. 1: Übersicht über alle durchgeführten Analysen mit Angabe der Labor- und Anlagennummern

Zur Beurteilung des Baugrunds und der Grundwasserverhältnisse wurden ferner die folgenden für das Projektgebiet vorliegenden geologischen und hydrogeologischen Kartenwerke verwendet.

- [1] Hydrologische Karte von Nordrhein-Westfalen, Blatt 5004, Jülich, Grundrisskarte, Maßstab 1:25.000, Hrsg. Landesumweltamt NRW, 1987
- [2] Hydrologische Karte von Nordrhein-Westfalen, Blatt 5004, Jülich, Profilkarte, Maßstab 1:25.000, Hrsg. Landesumweltamt NRW, 1987
- [3] Karte der Grundwassergleichen, Blatt 5104, Düren, Stand April 1988, Maßstab 1:50.000, Hrsg. Landesumweltamt Nordrhein-Westfalen, Essen 1995
- [4] Online Auskunft "NRW Umweltdaten vor Ort" vom Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen (28.11.2019).

3. Projektbeschreibung

Das Erschließungsgebiet liegt im Nordosten der Stadt Jülich am Rande des Geländes der ehemaligen Fachhochschule Jülich. Das Grundstück 58 liegt im Nordwesten des Erschließungsgebiets.

Das gesamte Projektgebiet ist morphologisch über den Bebauungsplan dem ursprünglich hängigen Gelände angepasst. Das betrachtete Grundstück Nr. 58 ist im Bereich des geplanten Wohnhauses eben.

4. Ergebnisse

4.1 Baugrund

Durch die am 07. August 2019 abgeteuften Erkundungsbohrungen wurde folgende petrographische Zusammensetzung erkundet.

Zuoberst wurden in den Bohrungen **Auffüllungen (Schicht 1)** erkundet, die sich in nicht bindige und bindige Auffüllungen unterscheiden lassen.

Die **nicht bindigen Auffüllungen (Schicht 1a)** wurden zuoberst bis in Tiefen von 0,9 - 1,2 m u. GOK erkundet. Diese setzen sich aus sandigem bzw. schwach schluffigem, sandigem Kies zusammen. Die braunen, kiesigen Auffüllungen wurden in dichter Lagerung erkundet.

Unterhalb der Schicht 1a wurden in der Bohrung 1 bis in eine Tiefe von 1,5 m u. GOK bindige Auffüllungen (Schicht 1b) erbohrt. Der braune, schwach sandige, schwach kiesige Schluff mit grauen Schlieren wurde in steifer Konsistenz erkundet. Innerhalb der bindigen Auffüllungen musste die Bohrung 1 wegen zu großer Bohrwiderstände abgebrochen werden.

Unterhalb der Auffüllungen wurden in der Bohrung 2 die **Terrassensedimente des Rheins (Schicht 2)** erbohrt. Diese wurden als sandiger Kies sowie als schwach kiesiger, schwach schluffiger Sand aufgeschlossen. Die Schicht 2 lag zum Zeitpunkt der Erkundung in einer dichten Lagerung vor. Die Bohrung 2 musste innerhalb der Terrassensedimente aufgrund zu hoher Bohrwiderstände in 4,4 m u. GOK abgebrochen werden.

4.2 Grundwasser

In den am 07. August 2019 abgeteuften Bohrungen wurde weder Grund- noch Schicht- oder Stauwasser erbohrt. Die Bodenschichten lagen im erdfeuchten Zustand vor.

Gemäß der Karte der Grundwassergleichen in Nordrhein-Westfalen [3] befindet sich das Projektgebiet unmittelbar nördlich der Rurrand-Verwerfung. Diese ist als hydraulisch wirksam zu betrachten, woraus in einer Tiefenlage unterhalb von ca. 80 mNN eine lediglich geringe Grundwasserführung resultiert [2]. Bei einer mittleren Höhenlage des Projektgrundstücks von ca. 107 mNN ist somit mit einem Flurabstand von mindestens 27 m auszugehen.

Demnach ist Grundwasser bei beiden Gründungsvarianten (unterkellert, nicht unterkellert), gemäß den Erkundungen, nicht von Bedeutung.

In der Schicht 1b kann je nach Witterung (Niederschlag) unter Umständen eine Schichtwasserführung auftreten, ferner kann am Top von bindigen Schichten Staunässe entstehen.

Das Projektgelände liegt gemäß der online Auskunft NRW [4] nicht in einer ausgewiesenen oder geplanten Trinkwasserschutzzone.

4.3 Lagerungsdichte / Konsistenz

Die Lagerungsdichte der erkundeten Bodenschichten wird nachfolgend auf Grundlage der mittels der Rammsondierungen ermittelten Schlagzahlen N₁₀ der Schweren Rammsonde (DPH nach DIN EN ISO 22476-2, Spitzenquerschnitt 15 cm²) je 10 cm Eindringtiefe in den Untergrund bewertet. Die ermittelten Schlagzahlen sind in der Tabelle 2 sowie als Schlagzahldiagramm in der Anlage 3 dargelegt. Ferner wird die Lagerungsdichte anhand der Bodenansprache vor Ort sowie anhand des Eindringwiderstandes der Rammkernsonde im Zuge der Herstellung der Erkundungsbohrungen beurteilt.

					Sondi	erung DPH					
Tiefe Schlagzahlen N ₁₀ der Schweren Rammsonde je 10 cm Eindringung in den Untergrund											Mittelwert
- 1,0 m	4	10	12	9	21	21	15	12	10	11	12,5
- 2,0 m	9	7	6	5	5	6	6	12	19	21	9,6
- 3,0 m	19	18	15	17	13	12	13	11	10	15	14,3
- 4,0 m	14	13	14	14	15	18	20	19	14	18	15,9
- 5,0 m	15	19	20	21	18	20	15	18	13	17	17,6
- 6,0 m	13	18	14	15	15	31	> 100				29,4

Tab. 2: Ergebnis der Sondierung mit der Schweren Rammsonde (Spitzenquerschnitt: 15 cm²), nicht bindige Auffüllungen, bindige Auffüllungen, Terrassensedimente

Die Sondierung erfasst bis in eine Tiefe von 1,0 m u. GOK die nicht bindigen Auffüllungen in mitteldichter bis dichter Lagerung, für diesen Bereich wurden Schlagzahlen von N_{10} = 4 - 21 ermittelt. Die bindigen Auffüllungen in steifer Konsistenz wurden bis in eine Tiefe von 1,7 m u. GOK erfasst, für diesen Bereich wurden Schlagzahlen von N_{10} = 5 - 9 ermittelt. Unterhalb der Auffüllungen wurden die Terrassensedimente in mitteldichter bis dichter Lagerung mit Schlagzahlen von N_{10} = 10 - 31 erfasst. Innerhalb der Terrassensedimente musste die Sondierung aufgrund zu hoher Eindringwiderstände bei 5,7 m u. GOK abgebrochen werden.

4.4 Bodenkennwerte

Gemäß VOB Teil C und DIN 18300 erfolgt die Einteilung von Boden und Fels in Homogenbereiche entsprechend ihrem Zustand vor dem Lösen. Für die Homogenbereiche sind Eigenschaften und Kennwerte in Bandbreiten anzugeben. Bei Baumaßnahmen der Geotechnischen Kategorie GK 2 nach DIN 4020, zu denen das geplante Bauwerk zählt, sind demnach für die Homogenbereiche Angaben zu Bodengruppen, Korngrößenverteilung, Massenanteilen von Steinen und Blöcken, Dichte sowie je nach Bindigkeit Angaben zur Lagerungsdichte bzw. zu Konsistenz, Plastizität und Scherfestigkeit erforderlich.

Im Projektbereich können zwei Homogenbereiche unterschieden werden (siehe Tabelle 3).

Homogenbereich	Bodenschichten	Beschreibung
Homogenbereich I	Schicht 1b: bindige Auffüllungen	feinkörnige Böden
Homogenbereich II	Schicht 1a: nicht bindige Auffüllungen	grobkärnige Päden
Homogenbereich	Schicht 2: Terrassensedimente	grobkörnige Böden

Tab. 3: Festgelegte Homogenbereiche mit den zugehörigen Bodenschichten.

Den vorgenannten Homogenbereichen können die in den Tabellen 4 und 5 aufgeführten Eigenschaften zugeordnet werden. Für die statische Bemessung können, vorbehaltlich einer Prüfung der Übereinstimmung vor Ort, die aufgeführten Bodenkennwerte angenommen werden. Die Bodenkennwerte werden nach den Ergebnissen der anhand der Sondierbohrungen durchgeführten Material- und Konsistenzansprache sowie nach Erfahrungswerten abgeschätzt.

Homogenbereich nach DIN	18 300							
Homogenbereich I	feinkörnige Böden		Schicht 1b: bin	dige Auffüllungen				
Korngrößenverteilung nach D	DIN 18 123	d ₁₀ d ₃₀ d ₆₀	= 0,04 - 0,2 mm = 0,07 - 1,0 mm = 0,08 - 8,0 mm					
Massenanteilen von Steinen	und Blöcken nach DIN EN ISO		0 - 10 %					
Dichte nach DIN 18 125-2		ρ	1,85 - 2,10 t/m³					
undränierte Scherfestigkeit		cU	> 20 - 200 kN/m	12				
Wassergehalt nach DIN EN 1	17892-1	w	10 - 30 %					
Plastizitätszahl nach DIN 18	122-1	lρ	0 - 7 %					
Konsistenzzahl nach DIN 18	122-1	lc	0,75 - 1,0 (steif)					
bezogene Lagerungsdichte n	ach DIN 18 126	ΙD	-		_			
Organischer Anteil nach DIN	18 128		≤ 2 M%					
Bodengruppe nach DIN 18 19	96		[UM]					
Bodenklasse nach DIN 18 30	00 (alt)		4, (2)					
Bezeichnung der Bodenkörne	er nach DIN EN 14 688-1		sagrSi					
Frostempfindlichkeit nach ZT	VE-StB-09		F3, sehr frostempfindlich					
Verdichtbarkeitsklasse nach	ZTVA-StB97		V3, weniger gut verdichtbar					
Durchlässigkeitsbeiwert		k _f	< 1 x10 ⁻⁶ m/s					
Umweltrelevante Inhaltsstoffe	Э							
Bodenkennwerte nach Erfa	hrungswerten sowie nach DIN	1055-2						
Konsistenz:			weich	steif	halbfest			
Wichte des feuchten Bodens		γ	20 kN/m³	21 kN/m³	22 kN/m³			
Wichte des Bodens unter Au	ftrieb	γ'	10 kN/m³ 11 kN/m³		12 kN/m³			
Reibungswinkel		φ'	22,5 - 27,5°	22,5° - 27,5°	22,5 - 27,5°			
Kohäsion		C'	0 kN/m²	2 - 5 kN/m²	5 - 10 kN/m²			
Steifemodul		Es	≤ 10 MPa	10 MPa	25 MPa			
Tragfähigkeitsbeiwert		E _{V2}	≤ 25 MPa	≤ 25 MPa	≤ 45 MPa			

Tab. 4: Homogenbereich I: feinkörnige Böden mit den zugehörigen Bodenkennwerten

<u>Hinweis</u>: Der feinkörnige Boden der Schicht 1b (Homogenbereich I) kann bei Zutritt von Wasser aufweichen, wodurch eine erhebliche Konsistenzverschlechterung und somit eine deutliche Verminderung der Tragfähigkeit verursacht wird. Ggf. auftretende aufgeweichte Böden im Bereich der Grabensohle sind durch tragfähiges und verdichtungsfähiges Material z.B. Kiessand zu ersetzen.

Homogenbereich nach DIN	18 300		01:114						
Homogenbereich II	grobkörnige Böden			cht bindige Auffüll rassensedimente	ungen				
-		-1		rassensedimente					
I/	NN 40 400	d ₁₀	= 0,1 - 1,5 mm						
Korngrößenverteilung nach D	JIN 18 123	d 30	= 0,2 - 4,0 mm						
	I DI" 1	d ₆₀	= 0,6 - 20 mm						
	und Blöcken nach DIN EN ISO 14688		≤ 30 %						
Dichte nach DIN 18 125-2		ρ	ca. 1,8 - 2,2 t/m	15					
undränierte Scherfestigkeit Wassergehalt nach DIN EN IS	CO 17902 1	CU	5 - 20 %						
Plastizitätszahl nach DIN 18		W I _P	3 - 20 70						
Konsistenzzahl nach DIN 18		Ic	-						
bezogene Lagerungsdichte na	76V-00-0V-0V-0V-0V-0V-0V-0V-0V-0V-0V-0V-0V	In	65 - 85 % (dich	t delagert)					
Organischer Anteil nach DIN			≤ 1 M%						
Bodengruppe nach DIN 18 19			GW, [GW], SW						
Bodenklasse nach DIN 18 30			3						
Bezeichnung der Bodenkörne	er nach DIN EN ISO 14 688-1		sisaGr, saGr, sigrSa						
Verdichtbarkeitsklasse nach 2	ZTVA-StB97		V 1: gut verdichtbar						
Frostempfindlichkeit nach ZT	VE-StB-09		F 1: nicht frostempfindlich						
Durchlässigkeitsbeiwert		k _f	> 1 x 10 ⁻⁵ m/s						
Umweltrelevante Inhaltsstoffe	9								
Bodenkennwerte nach Erfa	hrungswerten sowie nach DIN 10	55-2							
Lagerungsdichte			locker	mitteldicht	dicht				
Wichte des feuchten Bodens		γ	18 kN/m³	19 kN/m³	20 kN/m ³				
Wichte des Bodens unter Auf	trieb	γ'	10 kN/m³	11 kN/m³	12 kN/m³				
Reibungswinkel		φ'	30° - 32,5°	32,5° - 35°	35° - 37,5°				
Kohäsion		C'	0 kN/m²	0 kN/m²	0 kN/m²				
Steifemodul		Es	80 MPa	100 MPa	100 MPa				
Tragfähigkeitsbeiwert		E _{V2}	≤ 80 MPa	≤ 100 MPa	≤ 120 MPa				

Tab. 5: Homogenbereich II: grobkörnige Böden mit den zugehörigen Bodenkennwerten

4.5 Tektonik und Seismizität

Das Projektgelände liegt im Bereich der Niederrheinischen Bucht und innerhalb dieser auf der Erft-Scholle. Die Niederrheinische Bucht ist durch zahlreiche SE-NW streichende tektonische Verwerfungen und Störungen sowie SW-NE streichende Überschiebungen und Störungen gekennzeichnet. Hierdurch sind zahlreiche antithetisch nach Nordosten verkippte Einzelschollen entstanden.

Ein ruckhafter Abbau aufgestauter Spannungen in Form von episodischen Erdbeben kann nicht ausgeschlossen werden. Im Fall von Erdbeben können insbesondere im Bereich tektonischer Störungen ggf. Versatzbeträge auftreten.

Tektonisch beeinträchtigt wird das Projektgelände durch die südlich verlaufende Rurrand-Verwerfung. Die Bewegungen im Bereich der tektonischen Störungen sind bereichsweise rezent aktiv. Gemäß DIN 4149:2005-04 wird Jülich der Erdbebenzone 3 (Intensitätsintervall 7,5 bis < 8,0, Bemessungswert der Bodenbeschleunigung 0,8 m/s²) zugeordnet. Es liegen die Untergrundklasse S (Gebiete tiefer Beckenstrukturen mit mächtiger Sedimentfüllung) und die Baugrundklasse C vor.

Das geplante Gebäude wird, vorbehaltlich einer dem entgegenstehenden Konstruktion, gemäß DIN 4149 der Bedeutungsklasse II zugeordnet (Bedeutungsbeiwert γ_I = 1,0). Der Nachweis der Standsicherheit für den Lastfall "Erdbeben" ist gemäß den Vorgaben der DIN 4149:2005-04 Kap. 7.1, Absatz (3) zu führen. Ohne

rechnerischen Standsicherheitsnachweis sind oberhalb des Gründungsniveaus maximal 2 Vollgeschosse zulässig, sofern die Bedingungen gemäß Kap. 7.1 der DIN 4149:2005-04 nicht eingehalten werden bzw. zutreffen.

Hinweis: Zur Gewährleistung der Erdbebensicherheit des geplanten Gebäudes ist darauf zu achten, dass die verwendeten Baustoffe für den Einsatz in Bereichen der Erdbebenzone 3 zugelassen sind. Insbesondere Rohrleitungen sollten möglichst aus bewegungsunempfindlichen Materialien (z.B. Gußrohre) erstellt werden, um Schäden aufgrund von Boden- und Bauwerksbewegungen zu vermeiden.

4.6 Ergebnisse der chemischen Untersuchungen

Aus den aufgefüllten und anstehenden Böden im möglichen Aushubbereich wurde die Mischprobe "MP 58: 0,0 - 3,6 m" erstellt und gemäß den Vorgaben der LAGA Boden untersucht.

Die Ergebnisse sind in der Tabelle 6 den Zuordnungswerten der LAGA Boden gegenübergestellt. Der ausführliche Laborbericht ist in der Anlage A 1 wiedergegeben.

Die untersuchte Mischprobe ist gemäß der durchgeführten Analyse aufgrund des erhöhten Nickel-Gehalts im Feststoff der LAGA-Einbauklasse Z 1 zuzuordnen. Sämtliche anderen Parameter im Eluat und im Feststoff zeigen gemäß den durchgeführten Analysen keine Überschreitungen der Grenzwerte. Demnach ist die Mischprobe "MP 58: 0,0 - 3,6 m" der <u>LAGA Einbauklasse Z 1</u> nach LAGA Boden zuzuordnen.

Parameter	Labornummer 1911301-033: MP 58 0,0 - 3,6 m	Zuordnungswert für Feststoffe in Boden gemäß LAGA -Nr. 20 [mg/kg](außer *)								
Feststoff	Messwert [mg/kg] (außer *)		Z 0		Z 1	Z 2				
		Sand	Schluff	Ton						
Arsen	5,21	10	15	20	45	150				
Blei	17,0	40	70	100	210	700				
Cadmium	< 0,4	0,4	1	1,5	3	10				
Chrom	21,1	30	60	100	180	600				
Kupfer	8,98	20	40	60	120	400				
Nickel	16,5	15	50	70	150	500				
Quecksilber	< 0,1	0,1	0,5	1	1,5	5				
Thallium	< 0,4	0,4	0,7	1	2,1	7				
nk	46,7	60	150	200	450	1500				
Cyanide, ges.	<1	-	_	-	3	10				
TOC* [%]	< 0,5	0,5 (1,0)	0,5 (1,0)	0,5 (1,0)	1,5	5				
EOX	< 0,8	1	1	1	3	10				
Kohlenwasserstoffe / GC (C ₁₀ – C ₄₀)	< 100	100	100	100	600	2000				
Kohlenwasserstoffe / GC (C ₁₀ – C ₂₂)	< 100	100	100	100	300	1000				
BTEX	< 0,15	1	1	1	1	1				
LHKW	< 0,18	1	1	1	1	1				
PCB	< 0.015	0,05	0,05	0,05	0,15	0,5				
PAK nach EPA	0,38	3	3	3	3 (9)	30				
Benzo(a)pyren	< 0,03	0,3	0,3	0,3	0,9	3				
Parameter	Labornummer 1911301-033: MP 58 0,0 - 3,6 m		Zuordn	ungswert für Boden näß LAGA - [µg/l] (außer	r Eluate in Nr. 20					
Eluat	Messwert [µg/l] (außer *)	Z 0	Z 1.	.1	Z 1.2	Z 2				
pH-Wert* [-]	9,3	6,5-9,5	6,5-9		6-12	5,5-12				
Leitfähigkeit* [µS/cm]	47	250	250	0	1500	2000				
Chlorid* [mg/l]	< 10	30	30		50	100				
Sulfat* [mg/l]	< 20	20	20		50	200				
Cyanide, ges.	< 5	5	5		10	20				
Arsen	< 10	14	14	8	20	60				
Blei	< 7	40	40		80	200				
Cadmium	< 0,5	1,5	1,5	5	3	6				
Chrom	< 7	12,5	12,	5	25	60				
Kupfer	< 10	20	20		60	100				
Nickel	< 10	15	15		20	70				
Quecksilber	< 0,2	< 0,5	< 0		1	2				
Zink	< 40	150	150		200	600				
Phenolindex	< 10	20	20		40	100				

Tab. 6: Ergebnisse der Untersuchungen nach LAGA 20 Boden an der Probe "MP 58: 0,0 - 3,6 m". Farbig unterlegt sind die Messwerte, die den Zuordnungswert Z 0 gemäß LAGA Nr. 20 Boden (Stand Nov. 2004) überschreiten.

5. Empfehlungen für die Gründung des Gebäudes: Gründungsart, zulässige Bodenpressung, Setzungen

Die OKFFEG wird mit + 0,2 m zur GOK (107,3 mNN) mit einer Bodenplatte von 0,3 m inklusive Fußbodenaufbau angenommen. Mit einer angenommenen Tiefe eines ggf. geplanten Kellers von - 2,7 m zur GOK liegt die OKFFKG entsprechend bei 104,6 mNN, wobei ebenfalls von einer 0,3 m mächtigen Bodenplatte (inklusive Fußbodenaufbau) ausgegangen wird.

Gemäß den Ergebnissen der Erkundungen ist sowohl für ein nicht unterkellertes Wohnhaus als auch für ein unterkellertes Wohnhaus eine Flachgründung auf einer lastabtragenden Bodenplatte möglich.

5.1 nicht unterkellertes Gebäude

5.1.1 lastabtragende Bodenplatte

Die Gründungsebene eines nicht unterkellerten Gebäudes besteht i. W. aus dicht gelagerten, nicht bindigen Auffüllungen (Schicht 1a).

Hinsichtlich der Tragfähigkeit kann die lastabtragende Bodenplatte oberhalb eines reduzierten Gründungspolsters im Sinne einer kapillarbrechenden Schicht (Mindestmächtigkeit 15 cm) auf den nicht bindigen Auffüllungen gegründet werden. Die nicht bindigen Auffüllungen sind augenscheinlich als nicht ausreichend frostsicher einzustufen. Um die Frostsicherheit der Bodenplatte zu gewährleisten, wird bis zum Erreichen der frostsicheren Tiefe von 0,8 m u. GOK eine Frostschutzschürze empfohlen. Die nicht bindigen Auffüllungen sind nach Erfordernis vorab nachzuverdichten. Bereiche, in denen örtlich ggf. bindige Auffüllungen vorliegen, erfordern einen Bodenaustausch bis zum Erreichen der nicht bindigen Auffüllungen. Für die Abtragung der Bauwerkslasten sind die Böden der Schicht 1a bei Vorliegen einer mindestens mitteldichten Lagerung gut geeignet.

Gemäß den vorgenannten Annahmen (OKFFEG + 0,2 m zur GOK, Stärke Bodenplatte 0,3 m inklusive Fußbodenaufbau) liegt die Sohle des reduzierten Polsters bei 0,25 m u. GOK.

Das reduzierte Gründungspolster kann aus gut kornabgestuftem, verdichtungsfähigem, frostsicherem, mineralischem Baustoff hergestellt werden. Für die Lastabtragung der Bodenplatte, die die Bauwerkslasten übernimmt, sind bei der Plattengründung i. W. die geotechnischen Eigenschaften der nicht bindigen Auffüllungen (Schicht 1a) maßgeblich. Die geotechnischen Eigenschaften der Schicht 2 (Terrassensedimente) sind für die tiefreichende Lastabtragung relevant.

Für gut kornabgestufte, mineralische Baustoffe (z. B. Kiessand 0/32, 0/63 oder 0/100, frostsicher, vergleichbar der Bodengruppe GW nach DIN 18196), können die angegebenen Bodenkennwerte der grobkörnigen Böden, Kap. 4.4 angewendet werden. Ferner können für derartige Baustoffe die in den Tabellen 7 u. 8 angegebenen Bodenpressungen gemäß DIN 1054:2003-01 bzw. gemäß Tab. A 6.2 des Handbuchs Eurocode 7, Band 1 (Bemessungswerte des Sohlwiderstands, keine aufnehmbaren Sohldrücke und keine zulässigen Bodenpressungen) beurteilt werden.

kleinste Einbindetiefe des Fundaments	aufnehmbarer Sohldruck σ _{zul} [kN/m²] für Streifenfundamenten mit Breiten b bzw. b' von									
des rundaments	0,5 m	1,0 m	1,5 m	2,0 m	2,5 m	3,0 m				
0,5 m	200	300	330	280	250	220				
1,0 m	270	370	360	310	270	240				
1,5 m	340	440	390	340	290	260				
2,0 m	400	500	420	360	310	280				

Tab. 7: höchstzulässige Bodenpressung für nicht bindigen Baugrund und setzungsempfindliches Bauwerk (Auszug aus der Tabelle A.2 der DIN 1054:2003-01), Böden der Bodengruppen GW, SW, SE, (SU)

kleinste Einbindetiefe	Bemessungswert des Sohlwiderstands σ _{R,d} [kN/m²] bei Streifenfundamenten mit Breiten b bzw. b' von									
des Fundaments	0,5 m	1,0 m	1,5 m	2,0 m	2,5 m	3,0 m				
0,5 m	280	420	460	390	350	310				
1,0 m	380	520	500	430	380	340				
1,5 m	480	620	550	480	410	360				
2,0 m	560	700	590	500	430	390				

Tab. 8: Bemessungswerte des Sohlwiderstandes σ_{Rd} auf nicht bindigen Baugrund GW, SW, GE, SE, SU, GU nach DIN für setzungsempfindliche Bauwerke nach Tab. A 6.2 Eurocode 7

Die Tragfähigkeit im Bereich der Gründung sollte mittels Plattendruckversuchen nach DIN 18134 geprüft werden. Es sollte ein Tragfähigkeitsbeiwert von mindestens ca. E_{v2} = 80 MPa erreicht werden. Erfahrungsgemäß kann, vorbehaltlich einer Prüfung durch Plattendruckversuche, bei Erreichen des vorgenannten Tragfähigkeitsbeiwerts für den Bettungsmodul k_s ein Wert von 30 MN/m³ angenommen werden.

<u>Hinweis</u>: Der Bettungsmodul ist keine Bodenkonstante. Die Bemessung ist i. W. von der Konstruktion des Bauwerks abhängig und fällt somit in den Verantwortungsbereich des Tragwerksplaners!

Vorbehaltlich der o. g. detaillierten Grundbruch- und Setzungsberechnungen sollte für das geplante Gebäude bei einer Gründung auf einem reduzierten Gründungspolster eine Setzung des Gründungspolsters in einer Größenordnung von 1 - 2 mm angenommen werden. Die Gesamtsetzung ist mit 1 - 2 cm zu veranschlagen.

5.1.2 Streifenfundamente

Alternativ kann das nicht unterkellerte Gebäude auch auf Streifenfundamenten gegründet werden. Die frostfreie Gründungsebene des nicht unterkellerten Gebäudes würde im Falle der Gründung auf Streifenfundamenten in den nicht bindigen Auffüllungen (Schicht 1a) liegen.

Zur Gewährleistung der Frostsicherheit ist eine Einbindetiefe der Fundamente inkl. der Bodenplatte von min. 0,8 m u. GOK erforderlich.

Zur Unterstützung der Bodenplatte zwischen den Streifenfundamenten sollte die kapillarbrechende Schicht aus gut kornabgestuftem, verdichtetem, mineralischem Baustoff in einer Mindestmächtigkeit von 15 cm erstellt werden.

Für die Gründung des Gebäudes sind in diesem Fall die geotechnischen Eigenschaften der nicht bindigen Auffüllungen (Schicht 1a) maßgeblich. Die geotechnischen Eigenschaften der Terrassensedimente (Schicht 2) sind für die tiefreichende Lastabtragung relevant.

Für die nicht bindigen Auffüllungen können die in Kap. 4.4 angegebenen Bodenkennwerte sowie die zulässige Bodenpressungen gemäß DIN 1054, Tab. A.2 bzw. gemäß Tab. A 6.2 des Handbuchs Eurocode 7, Band 1 (Bemessungswerte des Sohlwiderstands, keine aufnehmbaren Sohldrücke und keine zulässigen Bodenpressungen) angewendet werden (siehe Tab. 7 u. 8).

Vorbehaltlich detaillierter Grundbruch- und Setzungsberechnungen sollte für das geplante Gebäude bei einer Gründung auf Streifenfundamenten innerhalb der Schicht 1a eine Setzung in einer Größenordnung von 1 - 2 cm angenommen werden.

5.2 unterkellertes Gebäude

Die Gründungsebene eines unterkellerten Gebäudes besteht i. W. aus dicht gelagerten, anstehenden Terrassensedimenten (Schicht 2).

Die lastabtragende Bodenplatte kann unmittelbar auf den Terrassensedimenten (Schicht 2) gegründet werden, die nach Erfordernis vorab nachzuverdichten sind. Über die Notwendigkeit einer kapillarbrechenden Schicht unterhalb der lastabtragenden Bodenplatte (Mindestmächtigkeit 15 cm) ist vor Ort zu entscheiden, gemäß den Ergebnissen der Bohrungen ist diese voraussichtlich nicht erforderlich.

Im Bereich der Gründung sind für die unmittelbare als auch die tieferreichende Lastabtragung der Bodenplatte somit die geotechnischen Eigenschaften der sandig-kiesigen Terrassensedimente maßgebend. Hierfür können die vorab angegebenen Bodenkennwerte für grobkörnige Böden (siehe Kap. 4.4, Homogenbereich II) angewendet werden. Ferner können für derartige Böden die in den Tabellen 7 und 8 angegebenen Bodenpressungen gemäß DIN 1054:2003-01 bzw. gemäß Tab. A 6.2 des Handbuchs Eurocode 7, Band 1 (Bemessungswerte des Sohlwiderstands (keine aufnehmbaren Sohldrücke und keine zulässigen Bodenpressungen) zur Beurteilung herangezogen werden.

Die Tragfähigkeit der Baugrubensohle im Bereich der Gründung sollte mittels Plattendruckversuchen nach DIN 18134 geprüft werden. Es sollte ein Tragfähigkeitsbeiwert von mindestens ca. E_{v2} = 80 MPa erreicht werden. Erfahrungsgemäß kann, vorbehaltlich einer Prüfung durch Plattendruckversuche, bei Erreichen des vorgenannten Tragfähigkeitsbeiwerts für den Bettungsmodul k_s ein Wert von 30 MN/m³ für die statische Bemessung der Bodenplatte angenommen werden.

<u>Hinweis</u>: Der Bettungsmodul ist keine Bodenkonstante. Die Bemessung ist i. W. von der Konstruktion des Bauwerks abhängig und fällt somit in den Verantwortungsbereich des Tragwerksplaners!

Für die maßgebenden Grenzzustände nach EN 1990:2002 ist die geotechnische Bemessung der Gründung nachzuweisen (siehe Handbuch Eurocode 7, Band 1, Kap. 2, Grundlagen der geotechnischen Bemessung). Hierbei sind die in Kap. 2.4 des Handbuchs beschriebenen rechnerischen Nachweise und die in Kap. 2.5 beschriebenen konstruktiven Maßnahmen zu berücksichtigen.

Vorbehaltlich der o. g. detaillierten Grundbruch- und Setzungsberechnungen sollte für das geplante Gebäude bei einer Gründung auf den Terrassensedimenten eine Setzung in einer Größenordnung von 1 - 2 cm angenommen werden.

6. Empfehlungen für die Bauausführung

6.1 Aushub, Böschungen, Planum

Der Aushub für die Herstellung von Gräben für Grundleitungen sollte mittels eines Tieflöffelbaggers mit glatter Schneide erfolgen. Es wird empfohlen die Arbeiten rückschreitend auszuführen.

Bis zu einer Tiefe von 1,25 m dürfen Gräben (z. B. für Hausanschlussleitungen) senkrecht ausgeschachtet werden, ab 1,25 m Tiefe sind Gräben geböscht oder verbaut auszuführen. Böschungen können bei Vorliegen einer mindestens steifen Konsistenz in bindigen Böden (Schicht 1b) mit einem Böschungswinkel von 60° angelegt werden. Bei Vorliegen einer nur weichen Konsistenz ist der Böschungswinkel auf 45° zu beschränken. Innerhalb von nicht bindigen Böden (Schichten 1a und 2) sind Böschungen unter 45° anzulegen.

Bei Auftreten von Schichtwasserhorizonten wird empfohlen, die Gräben zu verbauen. Die Gräben für Hausanschlussleitungen sind unter Berücksichtigung der Vorgaben der DIN EN 1610 zu bemessen.

Das aus dem reduzierten Gründungspolster oder den Terrassensedimenten aufgebaute Planum ist nachzuverdichten und die Tragfähigkeit durch Plattendruckversuche zu prüfen.

Ein Befahren des Projektgeländes mit Radfahrzeugen ist oberhalb der sandig-kiesigen Auffüllungen möglich. Im Bereich bindiger Auffüllungsböden sollten eine Befahrung mit Radfahrzeugen und eine Bearbeitung mit vibrierenden Geräten (z. B. Rüttelplatte) unterbleiben.

Bindige Böden sind wasserempfindlich, hier sollten freigelegte Bereiche je nach Jahreszeit und Witterungsbedingungen gegen Wasserzutritt geschützt werden. Die Baugrubensohle sollte je nach Erfordernis und Dauer der ungeschützten Freilage durch ein ausreichendes Quergefälle (= 6 %) oder durch eine Folienabdeckung geschützt oder möglichst zügig überbaut werden.

6.2 Herstellung eines Gründungspolsters

Das reduzierte Gründungspolster (Mächtigkeit mind. 15 cm) sollte aus mineralischem Baustoff (z. B. Kies 0/32, 0/63, 0/100, ggf. RCL) hergestellt und verdichtet werden.

Für die nicht bindigen, mineralischen Baustoffe sind mit einer Glattmantelwalze ohne Vibration 4 - 8 Übergänge vorzusehen. Bei einem Einsatz einer vibrierenden Walze oder einer schweren Rüttelplatte sind 4 - 6 Übergänge erforderlich.

<u>Anmerkung:</u> Sollte beabsichtigt werden, das reduzierte Gründungspolster aus güteüberwachten RC-Baustoffen herzustellen, ist ein Antrag auf Erteilung einer Wasserrechtlichen Erlaubnis zu stellen. Prinzipiell sind die geologischen Standortbedingungen des Projektgeländes im Hinblick auf die Verwendung von RCL infolge des verhältnismäßig großen Grundwasserflurabstands als "günstig" zu bezeichnen

6.3 Wasserhaltung

Im Zuge der Baugrunderkundung wurde kein freier Grundwasserspiegel angetroffen. Gemäß den ausgewerteten Unterlagen ist mit einem Flurabstand von mindestens 27 m zu rechnen. Es kann davon ausgegangen werden, dass für das geplante Bauvorhaben Grundwasser nicht relevant ist. Innerhalb der bindigen Böden kann eine episodische Schichtwasserführung oder Staunässe auftreten.

Anfallendes Tag- oder Schichtwasser kann über die anstehenden und aufgefüllten, nicht bindigen Böden versickern oder kann bei starkem Wasserandrang über eine offene Wasserhaltung mittels Pumpensumpf und Pumpen beherrscht werden.

6.4 Abdichtung, Frostsicherheit

Für die erdberührten Teile des Gebäudes wird bei nicht unterkellerter Bauweise gemäß DIN 18533-1: 2017-07 eine Abdichtung gegen Bodenfeuchte und nicht drückendes Wasser nach W 1.1-E empfohlen. Eine kapillarbrechende Schicht unterhalb der Bodenplatte von 15 cm Mächtigkeit ist in jedem Fall vorzusehen, diese ist im Falle einer Gründung auf einem reduzierten Gründungspolster gegeben, sofern diese der Anforderung an die Frostsicherheit genügen. Für den Untergrund ist der Nachweis über eine ausreichende Wasserdurchlässigkeit (kf-Wert > 10-4 m/s) zu führen. Andernfalls ist die Abdichtung durch eine Drainage zu ergänzen (W 1.2 E).

Baumaßnahme: Jülich, ehemaliges FH-Gelände Neubau von Wohnhäusern - Grundstück 58 Baugrunderkundung

2018-01-03 - DaGa20-01-21SEG-Nr.58

Der zur Gewährleistung der Frostsicherheit der Gebäudegründung erforderliche frostsichere Aufbau in einer Mindeststärke von 0,8 m ist einzuhalten. Streifenfundamente und Frostschutzschürzen sollten inkl. Bodenplatte mindestens 0,8 m in den Untergrund einbinden.

Bei einem unterkellerten Wohnhaus ist eine Abdichtung nach DIN 18533-1: 2017-07 gegen Bodenfeuchte und nicht drückendes Wasser für die Bodenplatte und die erdberührten Teile nach W 1.1-E möglich, sofern der Baugrund die Mindestanforderung an die Wasserdurchlässigkeit (kf-Wert > 10⁻⁴ m/s) erfüllt. Zur Verifizierung dieses Sachstands wird die Ermittlung der tatsächlichen Wasserdurchlässigkeit mittels Nasssiebung des anstehenden Bodens empfohlen. Andernfalls ist die Abdichtung durch eine Drainage zu ergänzen (W 1.2 E).

Für die Wandsockel oberhalb des Erdbodens sollte nach DIN 18533-1: 2017-07 ein Schutz gegen Spritzwasser entsprechend W 4-E vorgesehen werden.

Die Festlegung der tatsächlich zur Ausführung kommenden Abdichtung obliegt dem zuständigen Fachplaner.

6.5 Wiederverwendbarkeit des Aushubbodens

Der Bodenaushub aus den nicht bindigen Auffüllungen und den Terrassensedimenten ist prinzipiell für eine setzungs- und sackungsfreie Rückverfüllung in Arbeitsräume oder Gräben geeignet. Anfallender Aushubboden aus dem Bereich der bindigen Böden kann zur Profilierung des Geländes verwendet werden oder muss abgefahren werden.

Gemäß der durchgeführten Analyse an der Mischprobe "MP 58: 0,0 - 3,6 m" ist das Material der LAGA-Einbauklasse Z 1 nach LAGA Boden zuzuordnen und als solches wiederzuverwerten oder zu entsorgen.

Im Falle von Rückfragen und eine weitergehende Beratung stehen wir Ihnen gerne zur Verfügung.

IQ Ingenieurgesellschaft Quadriga mbH

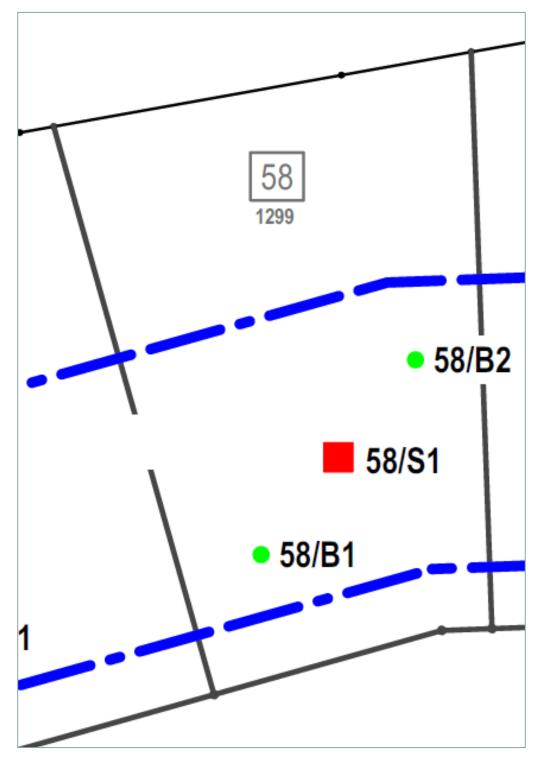
Holger Seeberger Dipl.-Geol. BDG

Durchwahl: -25 H.Seeberger@IQ-mbH.de

Gudrun Damm

M. Sc.

Durchwahl: -214 G.Damm@IQ-mbh.de


Anlagen:

7 tillagolli.	
	Lageplan
1 - 2	Bohrprofile der Bohrungen
1.1 - 2.1	Schichtenverzeichnisse der Bohrungen
3	Sondierdiagramm
4 - 5	Profilschnitte
6	Legende
A 1	Laborbericht der Analyse nach LAGA Boden

58/B 1 Rammkernsondierung

58/S 1 Rammsondierung (DPH)

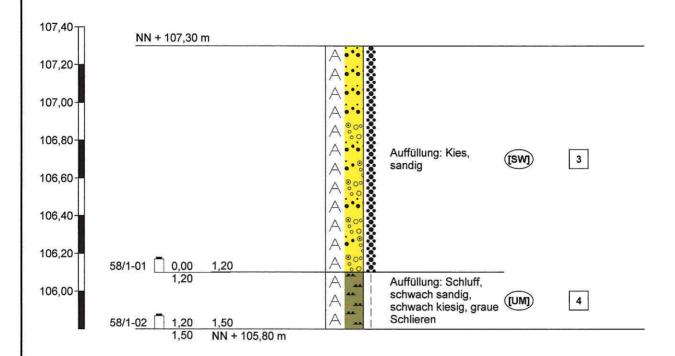
Planverfasser:

Ingenieurgesellschaft Quadriga mbH

Monnetstraße 24 52146 Würselen Tel.: 0 24 05 / 8 02 90-0 Fax: 0 24 05 / 8 02 90-29 e-mail: info@lQ-mbH.de www.lQ-mbH.de

Freianlagen-, Straßen-, Wegeplanung · Kanalisations-, Entwässerungsplanung Bauleitung und Bauüberwachung · SiGe-Koordination · Baugrundgutachten Hydrogeologische Gutachten · Altlastengutachten · Gefährdungsabschätzungen

Baumaßnahme:


Erschließung Bebauung Nr. A 14 "Alte Fachhochschule" Baugrunderkundung

Grundstück 58

Lageskizze der Ansatzstellen

<u>Auftraggeber:</u> SEG Jülich mbH & Co. KG

58/B 1

Höhenmaßstab 1:20

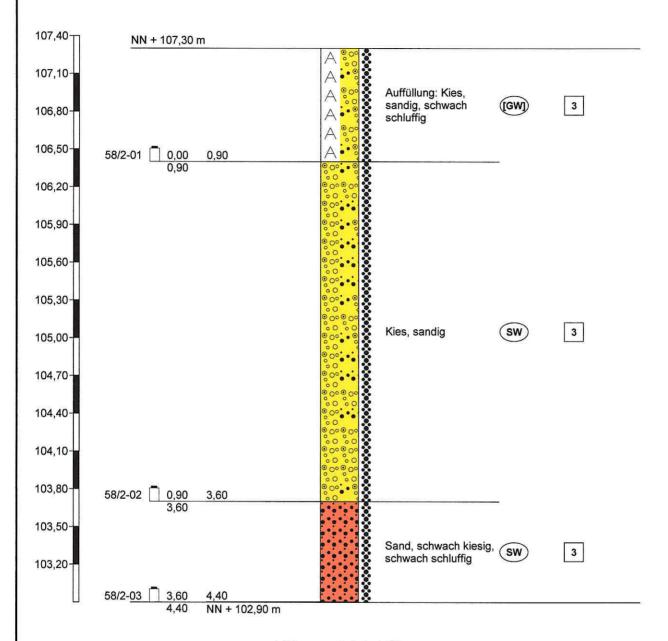
Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 und Sondierdiagramme nach DIN EN ISO 22476-2 Anlage: 1

Projekt: Jülich, altes FH-Gelände,
Grundstück 58

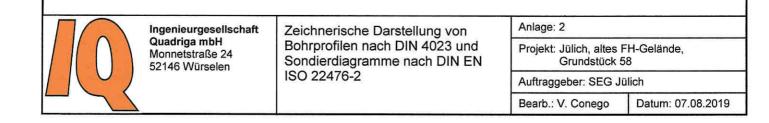
Auftraggeber: SEG Jülich

Bearb.: V. Conego Datum: 07.08.2019

Schichtenverzeichnis


für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Anlage 1.1


Bericht:

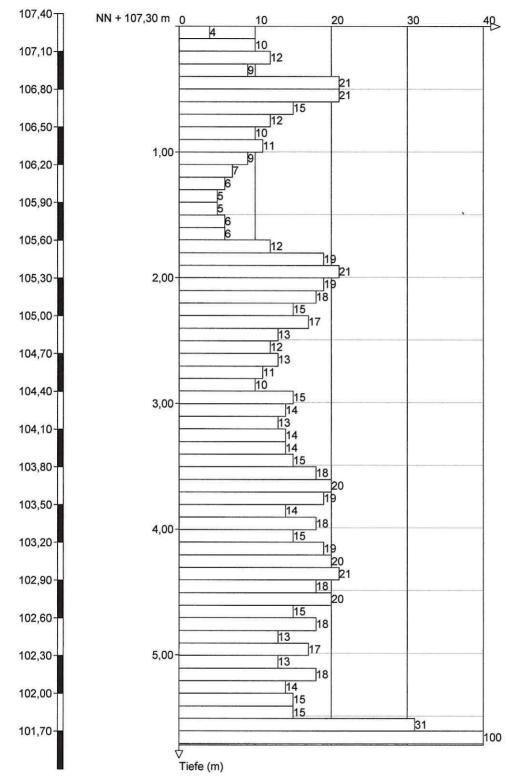
Az.: 2018-01-03

Bauvori	nabe	n: Jülich, altes FH-Gelä	ande, Grundstück 58								-	
Bohru	ıng	Nr 58/B1 /Blatt	1						D		08.201	9
1			2					3		4	5	6
12_16	a)	Benennung der Boden und Beimengungen	art					Bemerkungen	en Ent en gge t Art 58/			
	b)		Datum: 07.08 2 3 4		Tiefe							
unter Ansatz-	c)	Beschaffenheit nach Bohrgut		e)	Farbe			Bohrwerkzeuge Kernverlust		Art	Nr.	in m (Unter- kante)
punkt	f)	Übliche Benennung	g) Geologische ¹) Benennung	h)	1) Gruppe		ilk- halt					Kurito)
	a)	Auffüllung: Kies, sandig								58/	1-01	1,20
12 2000	b)											
a) E b) E c) E f) E f f f) E f f f) E f f f) E f f f) E f f) E f f f) E f f) E f f f f	dicht gelagert	d)	e)	braun								
	f)		g)	h)	[SW]	i) 0						
Auffullung: Schluff, schwach sandig, schwach kiesig, graue Schlieren							58/	1-02	1,50			
8 500	b)								Ĭ			
1,50	c)	steif	d)	e)	braun			Andrew (1996)	9 Art			
	f)	Auffüllungen	g)	h)	[UM]	i) 0		LINDILOIE			Nr. (
	a)										07.08.2019 4 5 Entnommen Proben Art Nr. (U) ka	
	b)											
	c)		d)	e)			Bemeri Sonde Wasser Bohrwe Kerny Sons i) Kalk-gehalt Rammkerr D = 60 mm (RKS60) ii) 0 en RKS60 KBF ENDTEUF ii) ii)					
1 a a b b c c f f f f f f f f f f f f f f f f	f)		g)	h)		i)						
Ansatz- punkt f) Übliche g) Geologische 1) h) Benennung h) 1,20 Column Geologische 1) H) Benennung												
	b)											
	c)		d)	e)	DED 10.34.132							
1												
	a)			•								
	b)											
	c)		d)	e)								
	f)		g)	h)		i)						
1) Eir	trag	una nimmt der wissens	chaftliche Bearbeiter vor.	-						h	-	

Höhenmaßstab 1:30

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben


Anlage 2.1

Bericht:

Az.: 2018-01-03

Bauvor	habe	n: Jülich, altes FH-Gel	ände, Grundstück 58					***				
Bohru	ıng	Nr 58/B 2 /Blatt	1						D	oatum: 07.		9
1			2					3		4	5	6
Dia	hrung a) b) c) f) f) a) b) f)	Benennung der Boder und Beimengungen	nart					Bemerkungen		Er		
Bohrung	Ergänzende Bemerku	ngen ¹)					Sonderprobe Wasserführung				Tiefe	
unter Ansatz-	c)	Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e)	Farbe			Bohrwerkzeuge Kernverlust Sonstiges	1	Art	Nr.	in m (Unter- kante)
punkt	f)	Übliche Benennung	g) Geologische ¹) Benennung	h)	1) Gruppe		Kalk- gehalt	Contagge				mamo
	a)	Auffüllung: Kies, sandig	g, schwach schluffig							58/	58/ 2-01	0,90
0.00	b)	Kalksteinschotter						Rammkernsonde				
0,90	c)	dicht gelagert	d)	e)				D = 60 mm RKS60				
	f)	Kalksteinschotter	agert d) e) RKS60/50									
	a)	Kies, sandig		-						58/	2-02	3,60
	b)	2										
Bohrung 1 a Bis b unter Ansatz- punkt f a b 0,90 c f a b 4,40 c f a b c f f	c)	dicht gelagert d) e)					RKS60/50					
	f)	Terrassensedimente	cht gelagert d) e) prrassensedimente g) h) SW i) 0									
	a)	Sand, schwach kiesig,	schwach schluffig							58/	2-03	4,40
4.40	b)					1		RKS50/40		3 1		
4,40	c)	dicht gelagert	d)	e)				ENDTEUFE				
	f) Terrassensedimente g) h) SW i) 0 a) Sand, schwach kiesig, schwach schluffig b) RKS50/40 c) dicht gelagert d) e) ENDTEUFE f) Terrassensedimente g) h) SW i) 0											
	a)	i										
	b)											
	c)		d)	e)							07.08.2019 4 5 Entnomme Proben Art Nr. (iii) 8/ 2-01 0	
	f)		g)	h)		i)						
	a)											
	b)											
	c)	(4 - 144) (3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	d)	e)				H				
	f)		g)	h)		i)						
¹) Eir	trag	ung nimmt der wissens	chaftliche Bearbeiter vor.	1				1				

58/DPH 1

Höhenmaßstab 1:30

Ingenieurgesellschaft Quadriga mbH Monnetstraße 24 52146 Würselen Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 und Sondierdiagramme nach DIN EN ISO 22476-2 Anlage: 3

Projekt: Jülich, altes FH-Gelände, Grundstück 58

Auftraggeber: SEG Jülich

Bearb.: V. Conego Datum: 07.08.2019

Boden- und Felsarten

Auffüllung, A

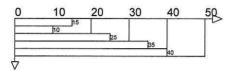
Sand, S, sandig, s

00000

Kies, G, kiesig, g

Schluff, U, schluffig, u

Korngrößenbereich


f - fein m - mittel

g - grob

<u>Nebenanteile</u>

- schwach (<15%) - stark (30-40%)

Rammdiagramm

Bodenklassen nach DIN 18300

- 1 Oberboden (Mutterboden)
- 3 Leicht lösbare Bodenarten
- 5 Schwer lösbare Bodenarten
- 7 Schwer lösbarer Fels

- 2 Fließende Bodenarten
- 4 Mittelschwer lösbare Bodenarten
- 6 Leicht lösbarer Fels und vergleichbare Bodenarten

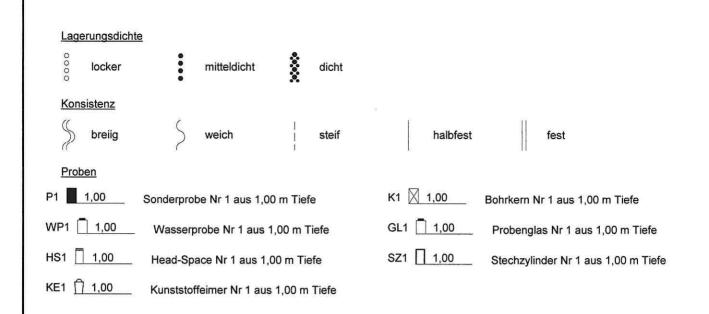
Bodengruppen nach DIN 18196

- GE enggestufte Kiese
- GI Intermittierend gestufte Kies-Sand-Gemische
- (SW) weitgestufte Sand-Kies-Gemische
- GU) Kies-Schluff-Gemische, 5 bis 15% <=0,06 mm
- GT Kies-Ton-Gemische, 5 bis 15% <=0,06 mm
- (SU) Sand-Schluff-Gemische, 5 bis 15% <=0,06 mm
- ST Sand-Ton-Gemische, 5 bis 15% <=0,06 mm
- UL leicht plastische Schluffe
- (UA) ausgeprägt zusammendrückbarer Schluff
- TM mittelplastische Tone
- OU) Schluffe mit organischen Beimengungen
- GH grob- bis gemischtkörnige Böden mit Beimengungen humoser Art
- (HN) nicht bis mäßig zersetzte Torfe (Humus)
- Schlämme (Faulschlamm, Mudde, Gyttja, Dy, Sapropel)
- (A) Auffüllung aus Fremdstoffen

- GW) weitgestufte Kiese
- SE) enggestufte Sande
- SI Intermittierend gestufte Sand-Kies-Gemische
- (GU*) Kies-Schluff-Gemische, 15 bis 40% <=0,06 mm
- (GT*) Kies-Ton-Gemische, 15 bis 40% <=0,06 mm
- (SU*) Sand-Schluff-Gemische, 15 bis 40% <=0,06 mm
- (ST*) Sand-Ton-Gemische, 15 bis 40% <=0,06 mm
- UM) mittelplastische Schluffe
- TL) leicht plastische Tone
- TA ausgeprägt plastische Tone
- OT Tone mit organischen Beimengungen
- OK grob- bis gemischtkörnige Böden mit kalkigen, kieseligen Bildungen
- HZ) zersetzte Torfe
- [] Auffüllung aus natürlichen Böden

Ingenieurgesellschaft Quadriga mbH Monnetstraße 24 52146 Würselen

Legende und Zeichenerklärung nach DIN 4023


Anlage: 6

Projekt: Jülich, altes FH-Gelände, Grundstück 58

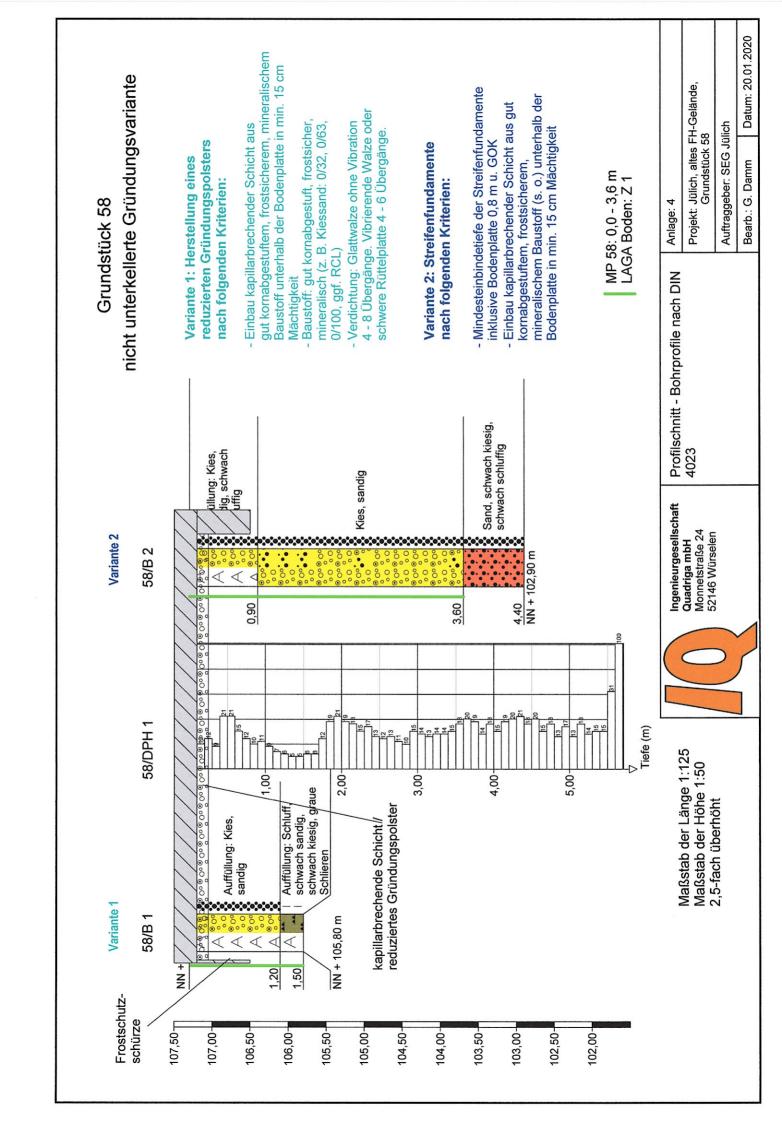
Auftraggeber: SEG Jülich

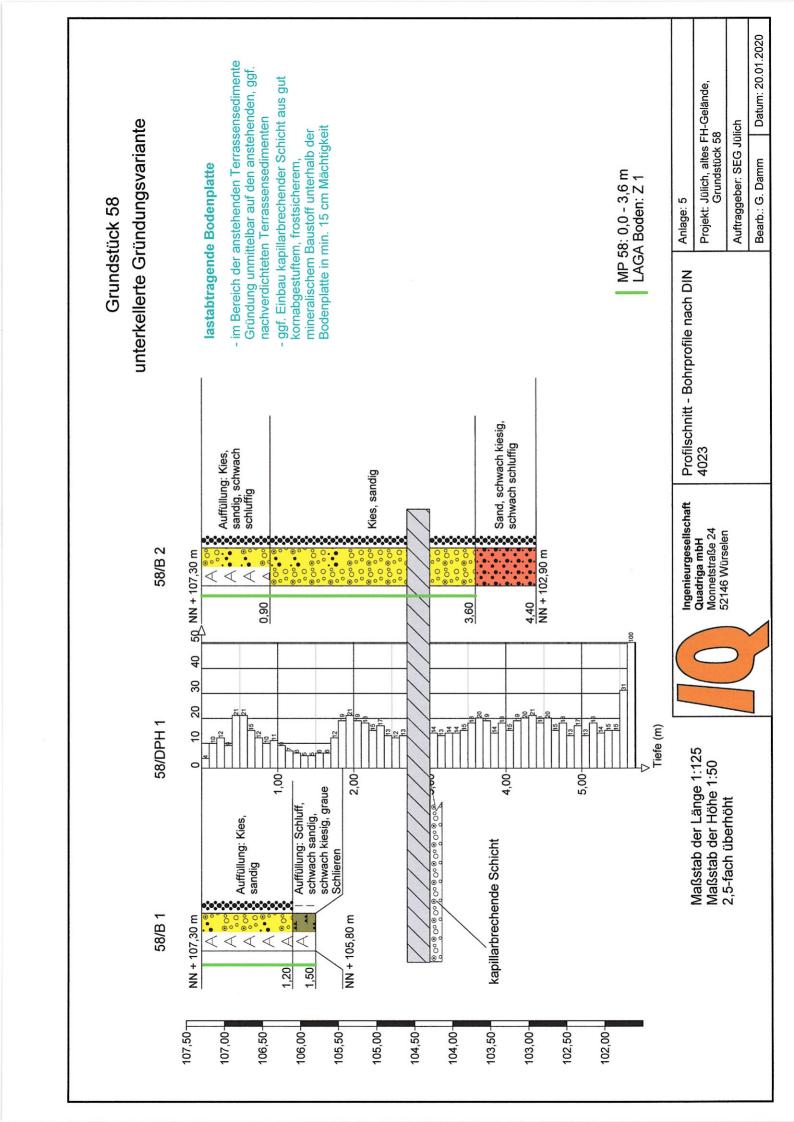
Bearb.: G. Damm

Datum: 20.01.2020

Quadriga mbH Monnetstraße 24

Legende und Zeichenerklärung nach **DIN 4023**


Anlage: 6


Projekt: Jülich, altes FH-Gelände, Grundstück 58

Auftraggeber: SEG Jülich

Bearb.: G. Damm

Datum: 20.01.2020

Seite 1/4

UMWELTTECHNOLOGIE GMBH

Chemische Untersuchung von Feststoffproben

(gem. "LAGA 20-Boden", Stand: 05.11.2004)

Auftraggeber:

IQ Ingenieurgesellschaft Quadriga mbH, Würselen

Unsere Auftragsnummer:

1911301

Projekt:

2018-01-03 Jülich, Alte FH

Probeneingang: Probenahme:

10.09.2019 Anlieferung

Probenvorbereitung:

Teilen und Brechen

Labornummer	191130			Zuordnung	swerte		1
Probenbez.	MP 58 (0,0	- 3,6 m)	ZO	Z 1.1	Z 1.2	Z2	_
1. Eluat	DIN EN 12457-4						-
pH-Wert (bei 20 °C)	DIN EN ISO 10523	9,3	6,5-9,5	6,5-9,5	6-12	5,5-12	
Leitfähigkeit	DIN EN 27888	47	250	250	1500	2000	
Chlorid	DIN EN ISO 10304-1	< 10	30	30	50	100	μS/cr
Sulfat	DIN EN ISO 10304-1	< 20	20	20	50	200	mg/l
Cyanide, ges.	DIN EN ISO 14403	< 5	5	5	10	200	mg/
Arsen	DIN EN ISO 17294-2	< 10	14	14	20	60	µg/l
Blei	DIN EN ISO 17294-2	< 7	40	40	80	200	µg/l
Cadmium	DIN EN ISO 17294-2	< 0,5	1,5	1,5	3		μg/l
Chrom	DIN EN ISO 17294-2	< 7	12,5	12,5	25	6	µg/l
Kupfer	DIN EN ISO 17294-2	< 10	20	20	60	60	µg/l
Nickel	DIN EN ISO 17294-2	< 10	15	15	20	100	µg/l
Quecksilber	DIN EN ISO 12846	< 0,2	< 0,5	< 0,5		70	µg/l
Zink	DIN EN ISO 17294-2	< 40	150	150	1 000	2	µg/l
Phenolindex	DIN EN ISO 14402	< 10	20	20	200	600	μg/l
2 Onlain alastic t		- 10	Z 0		40	100	µg/l
2. Originalsubstan:	z: bez. auf TS		Sand/Lehm-S		Z1	Z 2	l
Arsen	DIN EN ISO 17294-2	5,21	10/15/		45	150	
Blei	DIN EN ISO 17294-2	17,0	40/70/		210	700	mg/kg
Cadmium	DIN EN ISO 17294-2	< 0,4	0,4/1/		3	10	mg/kg
Chrom	DIN EN ISO 17294-2	21,1	30/60/	5 P. 1951	180	600	mg/kg
Kupfer	DIN EN ISO 17294-2	8,98	20/40/		120		mg/kg
Nickel	DIN EN ISO 17294-2	16,5	15/50/	And the second s	150	400	mg/kg
Quecksilber	DIN EN ISO 12846	< 0,1	0,1/0,			500	mg/kg
Thallium	DIN EN ISO 17294-2	< 0,4	0,4/0,		1,5 2,1	5	mg/kg
Zink	DIN EN ISO 17294-2	46,7	60/150/		450	7	mg/kg
Cyanide, ges.	DIN ISO 17380	< 1	00/130/	200		1500	mg/kg
TOC	DIN EN 13137	< 0,5	0,5 (1,0)/0,5 (1,	0)/0 = /4 0)	3	10	mg/kg
EOX	DIN 38414-S 17	< 0,8			1,5	5	%
	DIN EN 14039		1/1/		3	10	mg/kg
KW/GC (C ₁₀ -C ₄₀)	(LAGA KW/04)	< 100	100/100	/100	600	2000	mg/kg
KW/GC (C ₁₀ -C ₂₂)	DIN EN 14039	1 100			acres was v	///	
The second secon	(LAGA KW/04)	< 100	100/100	/100	300	1000	mg/kg
BTEX	ISO/DIS 22155	< 0,15	1/1/1		1	1	mg/kg
_HKW	ISO/DIS 22155	< 0,18	1/1/1		1	<u> </u>	mg/kg
PCB (n. DIN)	DIN EN 15308	< 0,015	0,05/0,05		0,15	0,5	mg/kg
PAK (EPA)	DIN ISO 18287	0,38	3/3/3		3 (9)	30	
Benzo(a)pyren	DIN ISO 18287	< 0,03	0,3/0,3/	Charles and the same of	0,9	3	mg/kg mg/kg

Würselen, den 20.09.2019

Christopher Braun sty Laborleiter

Chemische Untersuchung von Feststoffproben

(gem. "LAGA 20-Boden", Stand: 05.11.2004)

Seite 2/4

Untersuchungsparameter: PAK gem. EPA-Liste im Feststoff

Analysenverfahren: DIN ISO 18287

Untersuchungsergebnisse:

PAK [mg/kg TS]	
Labornummer	
	1911301-033
Probenbezeichnung	MP 58 (0,0 - 3,6 m)
Einzelverbindungen	
Naphthalin	< 0,03
Acenaphthylen	< 0,03
Acenaphthen	< 0,03
Fluoren	< 0,03
Phenanthren	0,05
Anthracen	< 0,03
Fluoranthen	0,09
Pyren	0,07
Benzo(a)anthracen	0,05
Chrysen	0,05
Benzo(b)fluoranthen	0,07
Benzo(k)fluoranthen	< 0,03
Benzo(a)pyren	< 0,03
Dibenzo(a,h)anthracen	< 0,03
Benzo(ghi)perylen	< 0,03
Indeno(1,2,3-cd)pyren	< 0,03
Summe EPA-PAK	0,38

<u>Chemische Untersuchung von Feststoffproben</u> (gem. "LAGA 20-Boden", Stand: 05.11.2004)

Seite 3/4

Untersuchungsparameter: Polychlorierte Biphenyle (PCB) im Feststoff

Analysenverfahren: DIN EN 15308

Untersuchungsergebnisse:

[mg/kg TS]		
Labornummer	1911301-033	
Probenbezeichnung	MP 58 (0,0 - 3,6 m)	
PCB 28	< 0,005	
PCB 52	< 0,005	
PCB 101	< 0,005	
PCB 153	< 0,005	
PCB 138	< 0,005	
PCB 180	< 0,005	
Summe PCB (DIN)	< 0,015	

UMWELTTECHNOLOGIE GMBH

<u>Chemische Untersuchung von Feststoffproben</u> (gem. "LAGA 20-Boden", Stand: 05.11.2004)

Seite 4/4

Untersuchungsparameter: BTEX-Aromaten und LHKW im Feststoff

Analysenverfahren: ISO/DIS 22155

Untersuchungsergebnisse:

BTEX, LHKW	
[mg/kg TS]	
Labornummer	1911301-033
Probenbezeichnung	MP 58 (0,0 - 3,6 m)
Benzol	< 0,06
Toluol	< 0,06
Ethylbenzol	< 0,06
p,m-Xylol	< 0,06
o-Xylol	< 0,06
Summe BTEX	< 0,15
Dichlormethan	< 0,06
Trichlormethan	< 0,06
1.1.1-Trichlorethan	< 0,06
Tetrachlormethan	< 0,06
Trichlorethen	< 0,06
Tetrachlorethen	< 0,06
Summe LHKW	< 0,18

PROBENAHMEPROTOKOLL

Projektdaten:

Ort der Probenahme: Jülich, alte FH

(Ort / Straße: Objekt / Lage)

Probenbezeichnung: MP 58 (0,0 - 3,6 m)

Probenehmer: Andreas Breuer (Geoservice Soltenborn GmbH)

Probenahmedatum: 07. August 2019 und -zeit: 12:00 – 13:00 Uhr

Vermutete Schadstoffe: Schwermetalle

Grund der Probenahme: x Deklarationsanalytik, □ Identifikationsanalytik

Weitere Angaben:

Herkunft des Abfalls: Probe aus Rammkernsondierung

Abfallerzeuger: SEG Jülich mbH & Co. KG

Abfallart / Allgemeine Beschreibung: Kies, sandig, schluffig, mit Kalksteinschotter

AVV-Nr.: 170504

Aussehen / Konsistenz / Geruch / Farbe: erdfeucht, geruchslos, braun

Material des Probenahmegerätes: ☐ Eisen, x Edelstahl, ☐ Kunststoff

Lagerungsdauer:
unbekannt, 1 Monat (Stunden, Tage, Monate, Jahre)

Art der Lagerung (Witterungseinfluss): □ Halle, □ Abgeplant, x in Kellerraum_____

Probenahmeverfahren: □ ruhende Haufwerksbeprobung, □ ausgebreitete Haufwerksbeprobung, X aus Rammkernsondierung

16:00 Uhr 10.09.2019

Mischprobe: 58/1-01: 0,00 - 1,20 m 58/2-01: 0,00 - 0,90 m

58/1-02: 1,20 - 1,50 m 58/2-02: 0,90 - 3,60 m

Probentransport und -lagerung: Kühlung x Nein, □ Ja (evtl. Kühltemperatur: _____°C)

Transportbeginn 14:00 Uhr 07.08.2019

Transportende 16:00 Uhr 07.08.2019

Transportende 16:15 Uhr 10.09.2019

Vor-Ort-Untersuchung: organoleptische Ansprache_____

Transportbeginn

Beobachtungen bei der Probenahme / Bemerkungen: unauffällig

Würselen / 10.09.2019 Unterschrift(en):

Ouadriga mbH Monnetstraße 24 5 2 1 4 6 Wurselen Tel: 02405/8 02 90-0 Fax: 8 02 90-29